• Title/Summary/Keyword: Air-Operated Valve

Search Result 60, Processing Time 0.025 seconds

The Steam Temperature Control of Renovated Boiler in 100MW Power Plant (100MW 발전소 개조 보일러의 증기온도 제어)

  • Lim, Geon-Pyo;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1935-1940
    • /
    • 2011
  • The control logic of steam temperature was redesigned, tested and applied to the power plant after its steam temperature equipments had been revised. This power plant use the ancillary gas gotten in the process of making iron in the steel mill. The boiler of power plant has the superheater and reheater to make the superheated steam. The superheater and reheater have the spray valve to control their temperature. The reheater has the gas bypass damper additionally in this plant. The control logics were redesigned in cascade forms and the initial parameters of control logics were calculated from the several step tests. The final parameters could be obtained through the several repeated tests and the feedforward functions were added by temperature deviation and air flow. The power plant is being commercially-operated normally by improved control logics and It is expected that this improved controls help the efficiency improvement and safe operation of plant.

Experimental Study on the Cooling and Heating Characteristics of System A/C Applying the Digital Scroll Compressor (디지털 스크롤 압축기를 적용한 시스템 에어컨의 냉난방특성에 대한 실험적 연구)

  • Jeon, Yong-Ho;Kim, Dae-Hoon;Kwon, Young-Chul;Jang, Geun-Sun;Lee, Yoon-Soo;Moon, Je-Nyung;Yoon, Baek;Hong, Ju-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.454-460
    • /
    • 2003
  • In order to investigate the cooling and heating characteristics of a variable-capacity system A/C applying a digital scroll compressor, the cooling and heating capacities and COP are measured by the psychrometric calorimeter. The capacity of the system is controlled by the digital scroll compressor, which is operated by controling PWM valve and the loading vs. unloading time. In the case of unloading compared that of loading, the consumption power of the compressor is about 11% and the capacity variation of the system A/C is within about 1%. When the system A/C is operated under the cooling and heating standard conditions, COP is nearly uniform but cooling capacity and heating capacity increase at minimum, rated and maximum modes. The system A/C applying the digital scroll compressor is effective for the range with high load or the width of large load variation. When the auxiliary heater is on, at the cold region, the system A/C produces the excellent heating capacity.

Development of the Control Algorithm for the Small PEM Fuel Cell Stack (소형 PEM 연료전지 스택의 제어 알고리즘 개발)

  • Kim, Tae-Hoon;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.134-141
    • /
    • 2010
  • Small PEM (Proton Exchange Membrane) fuel cell systems do not require humidification and have great commercialization possibilities. However, methods for controlling small PEM fuel cell stacks have not been clearly established. In this paper, a control method for small PEM fuel cell systems using a dual closed loop with a static feedforward structure is defined and realized using a DSP (Digital Signal Processor). The fundamental elements that need to be controlled in fuel cell systems include the supply of air and hydrogen, water management inside the stack, and heat management of the stack. For small PEM fuel cell stacks operated without a separate humidifier, fans are essential for air supply, heat management, and water management of the stack. A purge valve discharges surplus water from the stack. The proposed method controls the fan using double control loops to quicken transient response of the fan thereby improving the supply rate of air. Feedback control to compensate for the voltage change in fuel cell stack improves the response characteristics in fuel cell to load variations. The feasibility of proposed method was proved by the experiments with a 60W small PEM fuel cell system and operation of a notebook computer using this system.

Exhaust Emissions Characteristics on the SI Engine according to the Air-Fuel Mixture with Ozone (혼합기 오존 첨가에 따른 SI기관의 배기배출물 특성)

  • Lee, B.H.;Yi, C.S.;Lee, Y.H.;Lee, C.K.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.5-10
    • /
    • 2006
  • In a conventional and lean operating engine, the state of mixture is very important in the combustion and emission characteristics. Lean operation is known to decrease the formation while maintaining a good fuel economy, but the unstable operation due to misfire and erratic combustion prevents engines from being operated at very lean mixtures, so both combustion rates and exhaust emission formation need to be satisfied comparably. In this study, it is designed and experimented the modified engine, and analyzed the combustion and exhaust emission according to the change of engine speed and with adding ozone. The conclusions were drawn out and enumerated as follows. 1. At the experimental result of automobile diesel engine, it has been verified that the formation of particulate matter(PM) gas is able to be lower with the addition of optimum quantities of ozone. 2. Carbon monoxide(CO) was formed by the lack of oxygen and the thermal dissociation in the combustion process. Therefore, with the change of swirl valve's position and addition of oxygen and ozone, CO formation was decreased by the increasing of excessive O2, but it was increased by the temperature of combustion gas growing higher. As a result of the two effects, CO formation was decreased in this study. 3. Hydrocarbon(HC) was formed by the lack of O2, and the flow of mixture in cylinder. According to opening of the swirl valve and adding the oxygen and ozone, hydrocarbon gas was decreased by 20%, 9%, and 27.5%, respectively. 4. Nitric oxides($NO_x$) was strongly affected by the combustion gas temperature. As a result of respectively experimental conditions, $NO_x$ formation was increased about 20% due to (be the) high(er) combustion gas temperature.

  • PDF

A Study on the Visualization of Ice-formation Phenomena of Bath Water to Decide Maintenance Period of Gas Heater (가스히터 보수주기 결정을 위한 히터내부 열전달 매체액 결빙현상 가시화에 관한 연구)

  • Lee J. H.;Ha J. M.;Sung W. M.
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.3 s.15
    • /
    • pp.1-8
    • /
    • 2001
  • This study was carried out for the purpose of determination of maintenance period and investigation of weak point due to freeze when the gas heater of KOGAS valve station Is not operated in winter season. 3-dimensional non-linear numerical simulation was conducted in order to predict the time and location which bath water in heater reaches to ice point. FLUENT V 5.0, commercial code, is used for thermal fluid flow analysis. We thought this was problem of heat conduction solving the energy equation and modeled gas heater by using the real geometry and scale for performing the 3-dimensional simulation. It was analyzed complex heat transfer phenomena considering convection due to air on surface, conduction in insulation material, natural convection of liquid in heater and heat loss through the pipe.

  • PDF

The Influence of the Geometry on the Performance of a Thermopneumatic Micropump Operated by Capillary Attraction (모세관 인력으로 작동되는 열공압형 마이크로 펌프의 형상이 성능에 미치는 영향)

  • Jun, Do-Han;Yang, Sang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.778-782
    • /
    • 2009
  • Recently, we developed a simple thermopneumatic micropump having neither a membrane nor a valve. This micropump discharges liquid by a thermopneumatic pressure and refill by a capillary attraction. In case of the micropump driven by the capillary attraction, the flow characteristic depends mainly on the geometry of the micropump. In this paper, we investigated the influence of the geometry of the micropump on the performance of the micropump to illustrate the properness of the micropump shape. We analyzed the micropump characteristics of six types having different geometries by FVM simulation with a commercial CFD tool. Also we fabricated the micropumps with PDMS and glass by micromachining, and tested the performances. The simulation and the test results illustrate that the discharge volume and the discharge time depend on the chamber volume. The expansion angle of the inlet channel location has influence on the refill time, while the front air channel direction has influence on the backward flow loss.

Comparisons of Performance in CO2 Systems with Operating Conditions (운전조건 변화에 따른 이산화탄소 냉방시스템들의 성능 비교)

  • Bae, Kyung-Jin;Shin, Eun-Sung;Cho, Hong-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1484-1490
    • /
    • 2009
  • Since the cooling performance of a $CO_2$ cooling cycle is varied significantly with a variation of refrigerant charge amount and outdoor temperature, the reliability of $CO_2$ system is down. In this study, the performance characteristics of three kinds of $CO_2$ systems were measured and analyzed by varying refrigerant charge amount and outdoor temperature so as to study the characteristics of variation with cycle option. The applied system options are the single-stage compression(1C-1E) system, two-stage compression with 1-EEV(2C-1E) system, and two-stage compression with 2-EEV(2C-2E) system. The performances of two-stage compression with 2-EEV system were less sensitive than those of other systems and the system operated safely and steadily for wide charge amount. The performance of the two-stage compression with 1-EEV(2C-1E) system was the most sensitive to the charge amount, and that of the single-stage compression(1C-1E) system varied a lot with outdoor temperature.

  • PDF

Correlation on Compressor Discharge Temperature of System A/C using PWM Compressor in Heating Mode (PWM 압축기를 이용한 시스템에어컨의 난방운전 시 압축기 토출온도 상관식)

  • Lee, S.H.;Kwon, Y.C.;Chang, K.S.;Heo, S.H.;Kim, D.H.;Youn, B.
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1095-1100
    • /
    • 2006
  • An experimental study has been performed to investigate the correlation on compressor discharge temperature of system A/C in heating mode. Indoor and outdoor temperatures, the heating capacity, compressor discharge temperature and loading time are measured by the psychrometric calorimeter. The system is controlled by applying the scroll compressor, which Is operated by PWM valve and loading duty. With increasing outdoor temperature, the heating capacity increases, With increasing indoor temperature, it decreases. Also, with increasing loading duty the heating capacity increases. According to the increase in outdoor temperature and loading duty, compressor discharge temperature increases. From these experimental data, the correlation on compressor discharge temperature is proposed. It is expressed as a function of indoor temperature, outdoor temperature, and loading duty. The correlation obtained from the present study is agreed with the experimental data within $2^{\circ}C$.

  • PDF

Energy Efficient Control of Onboard Hydraulic Power Unit for Hydraulic Bipedal Robots (유압 구동식 이족 로봇의 구동을 위한 탑재식 유압 파워 유닛의 에너지 효율적 제어)

  • Cho, Buyoun;Kim, Sung-Woo;Shin, Seunghoon;Kim, Min-Su;Oh, Jun-Ho;Park, Hae-Won
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.86-93
    • /
    • 2021
  • This paper proposes a controller to regulate the supply pressure of the hydraulic power unit (HPU) for driving a bipedal robot. We establish flow rate models for charging accumulator, actuating joints and leaking from actuators and spool valves. This determines the pump driving motor speed to satisfy the demanded flow rate for operating the bipedal robot without the energy loss caused by the bypass through a pressure regulating valve. We apply proposed controller to an onboard HPU mounted on top of bipedal robot platform with twelve degrees of freedom. We implement air-walking motion and squat motion which require variable flow rate to the bipedal robot. Through this experiment, the energy efficiency of proposed controller was verified by comparing the electric energy consumed when the controller was applied and when the pump operated at constant speed. We also shows the capability of the HPU's control performance to regulate supply pressure.

The Measurement Error owing to Leakage of Gaugeline in Orifice Flowmeter (오리피스 유량계에서 게이지라인 누설에 의한 계량오차)

  • Lee, Cheol-Gu;Ha, Young-Chul;Her, Jae-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.143-148
    • /
    • 2003
  • This study was experimentally performed in order to estimate the errors due to the leakage of transmitter gaugelines in the orifice flow meter for natural gas. It would be a serious problem in safety if a large quantity of leak was occurred at the tubes or fittings like valve. But in most cases the safety problems might be rarely happened because the gas leak detectors could be operated in advance and the various kinds of inspection would be also fulfilled periodically. If the leakage was occurred continuously with an undetectable amount at the gaugelines for measuring the pressure or the differential pressure(DP), the amount of leakage might be an error or an unaccounted flow(UAE). In addition if the measuring value of pressure or DP were affected by the leakage, it might also be a measurement error. The experiments were performed to estimate the amount of leakage and to check the DP changes if it exited. First, through the measurement of the air pressure changes in the airtight container connected to a transmitter with gaugelines as the time passed, the amount of leakage causing from the fittings of gaugelines was roughly estimated. As changing the leak position of the gaugeline, the leak was intentionally made to break out. The variance of DP was checked as controlling the extent of leakage and compared to no leak conditions. Consequently, under the normal maintenance conditions, the result represented that the amount of leakage causing from the gaugelines was insignificant and also the DP changes on leakage conditions were too small to cause the errors of measurements.

  • PDF