• 제목/요약/키워드: Air-Motor

검색결과 1,100건 처리시간 0.033초

Improvements of Performance of Multi-DOF Spherical Motor by Double Air-gap Feature

  • Lee, Ho-Joon;Park, Hyun-Jong;Won, Sung-Hong;Ryu, Gwang-Hyun;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.90-96
    • /
    • 2013
  • As the need of electric motor is increased rapidly throughout our society, the various application fields are created and the service market called robot gets expanded as well as the existing industrial market. Out of those, the joint systems such as humanoid that is servo actuator for position control or all fields which require multi-degree of freedom (multi-DOF) require the development of innovative actuator. It is multi-DOF spherical motor that can replace the existing system in multi-DOF operating system. But, multi-DOF spherical motor that has been researched up to date is at the stage which is insufficient in performance or mechanical practicality yet. Thus, first of all the research results and limitation of the previously-researched guide frame-type spherical motors were analyzed and then the feature of double air-gap spherical motor which was devised to complement that was studied. The double air-gap multi-DOF spherical motor is very suitable spherical motor for system applying which requires the multi-DOF operation due to its simple structure that does not require other guide frame as well as performance improvement due to its special shape which has two air-gaps. So, the validity of the study was verified by designing and producing it with 3D-FEM through the exclusive jig for multi-DOF spherical motor.

Design and Evaluation of a Multi-layer Interior PM Synchronous Motor for High-Speed Drive Applications

  • Kim, Sung-Il;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • 제21권3호
    • /
    • pp.405-412
    • /
    • 2016
  • In general, surface mounted PM synchronous motors (SPMSMs) are mainly adopted as a driving motor for high-speed applications, because they have high efficiency and high power density. However, the SPMSMs have some weak points such as the increase of magnetic reluctance and additional losses as a consequence of using a non-magnetic sleeve. Especially, the magneto-motive force (MMF) in the air-gap of the SPMSMs is weakened due to the magnetically increased resistance. For that reason, a large amount of PM is consumed to meet the required MMF. Nevertheless, it cannot help using the sleeve in order to maintain the mechanical integrity of a rotor assembly in high-speed rotation. Thus, in this paper, a multi-layer interior PM synchronous motor (IPMSM) not using the sleeve is presented and designed as an alternative of a SPMSM. Both motors are evaluated by test results based on a variety of characteristics required for an air blower system of a fuel cell electric vehicle.

모터내장형 주축의 냉각특성에 관한 연구 (Study on the Cooling Effect of Motor Integrated Spindle)

  • 송영찬;이득우;최대봉;김수태
    • Tribology and Lubricants
    • /
    • 제13권1호
    • /
    • pp.8-13
    • /
    • 1997
  • Generally, A motor integrated spindle is selected to perform the high speed machining, to improve the machining flexibility, and to simplify the structure of machine tools. The thermal deformation caused by heat generation of the integrated motor is, however, serious problem in motor integrated spindle system. In this study, cooling characteristics for the several kinds of cooling systems(such as, oil-jacket cooling, air cooling) are investigated and more efficient cooling method is presented. The results show that the shaft cooling by the air cooling system is effective to improve the thermal characteristic of motor integrated spindle.

Fuzzy Logic Speed Controller of 3-Phase Induction Motors for Efficiency Improvement

  • Abdelkarim, Emad;Ahmed, Mahrous;Orabi, Mohamed;Mutschler, Peter
    • Journal of Power Electronics
    • /
    • 제12권2호
    • /
    • pp.305-316
    • /
    • 2012
  • The paper presents an accurate loss model based controller of an induction motor to calculate the optimal air gap flux. The model includes copper losses, iron losses, harmonic losses, friction and windage losses, and stray losses. These losses are represented as a function of the air gap flux. By using the calculated optimal air gap flux compared with rated flux for speed sensorless indirect vector controlled induction motor, an improvement in motor efficiency is achieved. The motor speed performance is improved using a fuzzy logic speed controller instead of a PI controller. The fuzzy logic speed controller was simulated using the fuzzy control interface block of MATLAB/SIMULINK program. The control algorithm is experimentally tested within a PC under RTAI-Linux. The simulation and experimental results show the improvement in motor efficiency and speed performance.

Air-Barrier Width Prediction of Interior Permanent Magnet Motor for Electric Vehicle Considering Fatigue Failure by Centrifugal Force

  • Kim, Sung-Jin;Jung, Sang-Yong;Kim, Yong-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.952-957
    • /
    • 2015
  • Recently, the interior permanent magnet (IPM) motors for electric vehicle (EV) traction motor are being extensively researched because of its high energy density and high efficiency. The traction motor for EV requires high power and high efficiency at the wide driving region. Therefore, it is essential to fully consider the characteristics of the motor from low speed to high-speed driving regions. Especially, when the motor is driven at high speed, a significant centrifugal force is applied to the rotor. Thus, the rotor must be stably structured and be fully endured at the critical speed. In this paper, aims to examine the characteristics of the IPM motor by adjusting the width of air-barrier according to the permanent magnet position which is critical in designing an IPM motor for EV traction motors and to conduct a centrifugal force analysis for grasping mechanical safety.

송풍기용 고속 2상 6/5 SRM의 설계 및 특성해석 (Design and Characteristics of High Speed 2-Phase 6/5 Switched Reluctance Motor for Air-blower Application)

  • 팜쭝히웨;이동희;안진우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.673-675
    • /
    • 2015
  • This paper presents a design of a high speed 2-phase 6/5 switched reluctance motor (SRM) for an air-blower application. This type of motor is suitable for the applications that require high speed and only one directional rotation as air-blower. The desired air-blower is unidirectional application, and requires a wide positive torque region without torque dead-zone. In order to get a wide positive torque region without torque dead-zone during phase commutation, asymmetric inductance characteristic with non-uniform air-gap is considered. The proposed motor can be operated at any rotor position. The proposed 6/5 SRM uses short flux path technique that achieved by means of winding configuration and lamination geometry. The purpose of short flux path is to reduce the core loss and the absorption MMF in the stator. The proposed 2-phase 6/5 SRM is verified by finite element method (FEM) analysis and Matlab-Simulink. In order to verify the design, a prototype of the proposed motor was manufactured for practical system.

  • PDF

연료전지 내구성능 향상을 위한 공기차단밸브 개발 (Development of Air Cutoff Valve for Improving Durability of Fuel Cell)

  • 박정희;이창하;권혁률;김치명;최규성
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.49-55
    • /
    • 2015
  • In this study, among in various scenarios of the duration degradation of the fuel cell, countermeasures for the cathode carbon carrier oxidation and the deactivation of catalyst by hydrogen / air interface formation have been studied. so the system was applied to the air cutoff valve. In terms of the component, the cold start performance, electrical stability, the airtight performance were mainly designed and their performance was confirmed. And in terms of the system, the air electrode flow is blocked off, so the oxygen concentration drops when system is powered off, As a result, By reducing unit cell voltage which affect the durability of the fuel cell reached up to 0.8V, the improved durability of the fuel cell was confirmed.

에어컨팬용 3상 SRM(200와트급) (Three phase Switched Reluctance Motor for 200W rated air conditioner blower)

  • 임준영;김상영;최용원
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(1)
    • /
    • pp.259-259
    • /
    • 2004
  • To date, induction motors have mainly been used for heating, ventilation, and air conditioning (HVAC) applications, however, there is significant research being done world-wide on the use of switched reluctance motor(SRM) in household home appliances. This papers proposes three phase SRM for the air-conditioner blower that has cost merit and good performance respectively compared with conventional induction motor.

  • PDF

High Speed Segmental Stator Type 4/3 SRM: Design, Analysis, and Experimental Verification

  • Hieu, Pham Trung;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1864-1871
    • /
    • 2017
  • This paper presents a design of a 2-phase segmental stator type 4/3 switched reluctance motor (SRM) for air-blower application. The air-blower requires only one direction rotation, high rotor speed without torque dead-zone. In order to satisfy the requirements of the load, the rotor of the 4/3 proposed SRM is designed with wider rotor pole arc and non-uniform air-gap is applied on the rotor shape. With a special rotor structure, the motor generates a wider positive torque region and has no torque dead-zone. The stator of the proposed SRM is constructed with two segmental C-cores, and there are no magnetic connections between 2 C-cores. The flux follows in a short closed loop in each C-core and has no reversal flux in the stator. The static and dynamic characteristics of the proposed motor are analyzed by the finite element method (FEA) and Matlab-Simulink, respectively. In order to verify the design, a prototype of the proposed motor has manufactured for laboratory test. The performance of the proposed motor is verified by the simulation and experimental results.

공중발사체를 위한 하이브리드 모터 설계 (Parametric Study on the Design of Hybrid Motor for Air Launch System)

  • 권순탁;이창진
    • 한국항공우주학회지
    • /
    • 제31권3호
    • /
    • pp.72-78
    • /
    • 2003
  • 초소형 공중발사용 발사체를 위한 HTPB/LOX 조합의 하이브리드 모터의 적용 가능성검토와, 기초설계를 실시하였다. 설계검증을 위하여 Pegasus XL의 자료를 사용하여 설계결과를 비교하였고, 하이브리드 모터의 평균 비추력이 330sec일 때 고체추진 발사체를 대체할수 있음을 확인하였다. 초소형 공중발사체를 위한 임무를 설정하고 기초설계를 실시하였다. 설계변수인 포트개수, 초기 산화제 플럭스, 연소실 압력의 변화에 대하여 임무제한조건을 충족시킬수 있는 비추력(Isp)의 영역을 알아내었으며, 이 영역에서 최적화를 실시 할 경우 발사체 총중량을 최소화하는 하이브리드 모터를 설계할 수 있음을 확인하였다.