• Title/Summary/Keyword: Air-Motor

Search Result 1,100, Processing Time 0.031 seconds

A Study on Laser Joining of Low Carbon Steel and Aluminum Alloy Part 1 : Process Parameters (강과 알루미늄의 레이저 접합에 관한 연구 Part 1 : 접합 변수의 최적 조건에 관한 연구)

  • Park, Tae-Wan;Cho, Jung-Ho;Na, Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.23 no.5
    • /
    • pp.25-29
    • /
    • 2005
  • Steel has been mainly used in the automotive industry, because of good mechanical properties, weldability and so on. However, there has been increase in using aluminum to reduce the weight of vehicle. This leads to improve fuel efficiency and to reduce air pollution. A steel-aluminum hybrid body structure is recently used not only to reduce the weight of vehicle but also to increase safety. In this paper, the laser beam joining method is suggested to join steel and aluminum. To avoid making brittle intermetallic compounds(IMC) that reduce mechanical properties of the joint area, only aluminum is melted by laser irradiation and wetted on the steel surface. The brittle IMC layer is formed with small thickness at the interface between steel and aluminum. By controlling the process parameters, brittle IMC layer thickness is suppressed under 10 micrometers which is a criterion to maintain good mechanical properties.

Study of TPA for cascading NVH target of electric parking brake (전자식 주차 브레이크 작동소음 개발 목표 설정을 위한 전달경로분석법의 적합성 연구)

  • Jung, Hyun Bum;Lee, Jae Yong;Han, Min Gyu;Jeon, Namil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.94-98
    • /
    • 2013
  • Transfer Path Analysis (TPA) is commonly used, by car makers and parts suppliers, analysis process to root the cause of NVH problems. In general, TPA is an analyzing technique to find the contributing factors of noise/vibration problems, and their transfer path in vehicle. However, not only TPA is used to analyze the source of NVH problems but also is used to predict NVH performance prior to the proto vehicle, or to set the development target for next new vehicle. Automotive parts manufacturing companies have to set NVH performance target when developing new systems just as car makers have NVH target set for new vehicle. Nevertheless, most of components are currently being developed based on subjective evaluation without an objective target. To judge the suitability of using TPA to set NVH target of electric parking brake, this research analyzed the transfer path by setting them in two points of view; Chassis Module and Electric Parking Brake, and comparing the measured value and calculated value. From this result, NVH target of electric parking brake will be approached in level of vehicle, system and component.

  • PDF

Energy Efficient Control of Onboard Hydraulic Power Unit for Hydraulic Bipedal Robots (유압 구동식 이족 로봇의 구동을 위한 탑재식 유압 파워 유닛의 에너지 효율적 제어)

  • Cho, Buyoun;Kim, Sung-Woo;Shin, Seunghoon;Kim, Min-Su;Oh, Jun-Ho;Park, Hae-Won
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.86-93
    • /
    • 2021
  • This paper proposes a controller to regulate the supply pressure of the hydraulic power unit (HPU) for driving a bipedal robot. We establish flow rate models for charging accumulator, actuating joints and leaking from actuators and spool valves. This determines the pump driving motor speed to satisfy the demanded flow rate for operating the bipedal robot without the energy loss caused by the bypass through a pressure regulating valve. We apply proposed controller to an onboard HPU mounted on top of bipedal robot platform with twelve degrees of freedom. We implement air-walking motion and squat motion which require variable flow rate to the bipedal robot. Through this experiment, the energy efficiency of proposed controller was verified by comparing the electric energy consumed when the controller was applied and when the pump operated at constant speed. We also shows the capability of the HPU's control performance to regulate supply pressure.

A parameter sweep approach for first-cut design of 5 MW Ship propulsion motor

  • Bong, Uijong;An, Soobin;Im, Chaemin;Kim, Jaemin;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.1
    • /
    • pp.25-30
    • /
    • 2019
  • This paper presents a conceptual design approach of air-cored synchronous machine with high temperature superconductor (HTS) field winding. With a given configuration of a target machine, boundary conditions are set in the cylindrical coordinate system and analytic field calculation is performed by solving a governing equation. To set proper boundary conditions, current distributions of the field winding and the armature winding are expressed by the Fourier expansion. Based on analytic magnetic field calculation results, key machine parameters are calculated: 1) inductance, 2) critical current of field winding, 3) weight, 4) HTS conductor consumption, and 5) efficiency. To investigate all potential design options, 6 sweeping parameters are determined to characterize the geometry of the machine and the parameter calculation process is performed for each design options. Among design options satisfying constraints including >80 % critical current margin and >95 % efficiency, in this paper, a first-cut design was selected in terms of overall machine weight and HTS conductor consumption to obtain a lightweight and economical design. The goal is to design a 5-MW machine by referring to the same capacity machine that was previously constructed by another group. Our design output is compared with finite element method (FEM) simulation to validate our design approach.

Factors affecting injury severity of occupant in rollover accident (전복사고에서의 탑승자 손상중증도에 미치는 요인 분석)

  • Hyuk Jin Jeon;Sang Chul Kim;Kang Hyun Lee;Ho Jung Kim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.1
    • /
    • pp.22-26
    • /
    • 2014
  • Fatality of accidents on curved roads where rollover accidents are likely to take place was higher than that on straight roads. We ought to investigate factors affecting injury severity of occupant in a vehicle rollover accident. From January 2011 to December 2013, we collected data about rollover motor vehicle crash accident. We surveyed occupant's injury, vehicle type, safety devices, type of rollover accident and the number of turn in accident. Of the 132 subjects, 56.1% were males, 50.8% were drivers, 48.5% fastened seat belt, and air bag deployed in 12.1%. Among injuries sustained head, chest and abdomen were major sites of severe injury(Abbreviated injury scale>2). Seat belt use, rollover type, and the number of 1/4 turn were found to have significant positive correlations with Injury Severity Score. The regression analysis herein found significance in safety belt use and the number of 1/4 turn. Seat belt use was a significant factor affecting injury severe of occupant in rollover accident.

Effects of Cooling Flow Rate on Gas Foil Thrust Bearing Performance (냉각 유량이 가스 포일 스러스트 베어링의 성능에 미치는 영향)

  • Sung Ho Hwnag;Dae Yeon Kim;Tae Ho Kim
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.76-80
    • /
    • 2023
  • This paper describes an experimental investigation of the effect of cooling flow rate on gas foil thrust bearing (GFTB) performance. In a newly developed GFTB test rig, a non-contact type pneumatic cylinder provides static loads to the test GFTB and a high-speed motor rotates a thrust runner up to the maximum speed of 80 krpm. Force sensor, torque arm connected to another force sensor, and thermocouples measures the applied static load, drag torque, and bearing temperature, respectively, for cooling flow rates of 0, 25, and 50 LPM at static loads of 50, 100, and 150 N. The test GFTB with the outer radius of 31.5 mm has six top foils supported on bump foil structures. During the series of tests, the transient responses of the bearing drag torque and bearing temperature are recorded until the bearing temperature converges with time for each cooling flow rate and static load. The test data show that the converged temperature decreases with increasing cooling flow rate and increases with increasing static load. The drag torque and friction coefficient decrease with increasing cooling flow rate, which may be attributed to the decrease in viscosity and lubricant (air) temperature. These test results suggest that an increase in cooling flow rate improves GFTB performance.

A Study on Increasing Motor Efficiency and Utilize Alternative Energy through the Similarity of Magnetic Quantum Arrangement and Meissner Effect (자기의 양자배열과 마이스너 효과의 유사성으로 모터 효율성 증대 및 대체에너지 활용 방안에 관한 연구)

  • Si-Woong Choi;Joo-Yeong Choi;Gyu-Tae Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.4_2
    • /
    • pp.991-999
    • /
    • 2024
  • This study is based on research on a magnetic induction amplification power generation system using quantum fluctuations, and aims to confirm the similarity to the meissner effect through quantum analysis using magnets and suggest the possibility of utilizing alternative energy. Research was conducted on increasing the efficiency of motors based on the similarity between magnetic quantum array experimental devices and the superconductor phenomenon. It was confirmed that the experimental device that arranged the quantum of magnetism rotated by canceling out the magnetism by having a resistance value of "0", which is not a general characteristic of magnetism that generates attractive force. This is an observation of the similarity between the superconductor phenomenon and the meissner effect, and it was confirmed that material synthesis or temperature had little effect. This study confirmed that the efficiency is more than 20 times that of existing power on average. Therefore, this study suggests that there is a possibility of commercialization of an Energy Harvesting System (EHS) that can produce and store energy.

A Novel Approach to Prevent Pressure Ulcer for a Medical Bed using Body Pressure Sensors

  • Young Dae Lee;Arum Park
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.146-157
    • /
    • 2024
  • Despite numerous air mattresses marketed to prevent Pressure Ulcers (PU), none have fully succeeded due to residual pressure surpassing critical levels. We introduces an innovative medical bed system aiming at complete PU prevention. This system employs a unique 4-bar link mechanism, moving keys up and down to manage body pressure. Each of the 17 keys integrates a sensor controller, reading pressure from 10 sensors. By regulating motor input, we maintain body pressure below critical levels. Keys are equipped with a servo drive and sensor controller, linked to the main controller via two CAN series. Using fuzzy or PI/IP controllers, we adjust keys to minimize total error, dispersing body pressure and ensuring comfort. In case of controller failure, keys alternate swiftly, preventing ulcer development. Through experimental tests under varied conditions, the fuzzy controller with tailored membership functions demonstrated swift performance. PI control showed rapid convergence, while IP control exhibited slower convergence and oscillations near zero error. Our specialized medical robot bed, incorporating 4-bar links and pressure sensors, underwent testing with three controllers-fuzzy, PI, and IP-showcasing their effectiveness in keeping body pressure below critical ulcer levels. Experimental results validate the proposed approach's efficacy, indicating potential for complete PU prevention.

Comparative Study on the Methodology of Motor Vehicle Emission Calculation by Using Real-Time Traffic Volume in the Kangnam-Gu (자동차 대기오염물질 산정 방법론 설정에 관한 비교 연구 (강남구의 실시간 교통량 자료를 이용하여))

  • 박성규;김신도;이영인
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.4
    • /
    • pp.35-47
    • /
    • 2001
  • Traffic represents one of the largest sources of primary air pollutants in urban area. As a consequence. numerous abatement strategies are being pursued to decrease the ambient concentration of pollutants. A characteristic of most of the these strategies is a requirement for accurate data on both the quantity and spatial distribution of emissions to air in the form of an atmospheric emission inventory database. In the case of traffic pollution, such an inventory must be compiled using activity statistics and emission factors for vehicle types. The majority of inventories are compiled using passive data from either surveys or transportation models and by their very nature tend to be out-of-date by the time they are compiled. The study of current trends are towards integrating urban traffic control systems and assessments of the environmental effects of motor vehicles. In this study, a methodology of motor vehicle emission calculation by using real-time traffic data was studied. A methodology for estimating emissions of CO at a test area in Seoul. Traffic data, which are required on a street-by-street basis, is obtained from induction loops of traffic control system. It was calculated speed-related mass of CO emission from traffic tail pipe of data from traffic system, and parameters are considered, volume, composition, average velocity, link length. And, the result was compared with that of a method of emission calculation by VKT(Vehicle Kilometer Travelled) of vehicles of category.

  • PDF

Pipetting Stability and Improvement Test of the Robotic Liquid Handling System Depending on Types of Liquid (용액에 따른 자동분주기의 분주능력 평가와 분주력 향상 실험)

  • Back, Hyangmi;Kim, Youngsan;Yun, Sunhee;Heo, Uisung;Kim, Hosin;Ryu, Hyeonggi;Lee, Guiwon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.2
    • /
    • pp.62-68
    • /
    • 2016
  • Purpose In a cyclosporine experiment using a robotic liquid handing system has found a deviation of its standard curve and low reproducibility of patients's results. The difference of the test is that methanol is mixed with samples and the extractions are used for the test. Therefore, we assumed that the abnormal test results came from using methanol and conducted this test. In a manual of a robotic liquid handling system mentions that we can choose several setting parameters depending on the viscosity of the liquids being used, the size of the sampling tips and the motor speeds that you elect to use but there's no exact order. This study was undertaken to confirm pipetting ability depending on types of liquids and investigate proper setting parameters for the optimum dispensing ability. Materials and Methods 4types of liquids(water, serum, methanol, PEG 6000(25%)) and $TSH^{125}I$ tracer(515 kBq) are used to confirm pipetting ability. 29 specimens for Cyclosporine test are used to compare results. Prepare 8 plastic tubes for each of the liquids and with multi pipette $400{\mu}l$ of each liquid is dispensed to 8 tubes and $100{\mu}l$ of $TSH^{125}I$ tracer are dispensed to all of the tubes. From the prepared samples, $100{\mu}l$ of liquids are dispensed using a robotic liquid handing system, counted and calculated its CV(%) depending on types of liquids. And then by adjusting several setting parameters(air gap, dispense time, delay time) the change of the CV(%)are calcutated and finds optimum setting parameters. 29 specimens are tested with 3 methods. The first(A) is manual method and the second(B) is used robotic liquid handling system with existing parameters. The third(C) is used robotic liquid handling system with adjusted parameters. Pipetting ability depending on types of liquids is assessed with CV(%). On the basis of (A), patients's test results are compared (A)and(B), (A)and(C) and they are assessed with %RE(%Relative error) and %Diff(%Difference). Results The CV(%) of the CPM depending on liquid types were water 0.88, serum 0.95, methanol 10.22 and PEG 0.68. As expected dispensing of methanol using a liquid handling system was the problem and others were good. The methanol's dispensing were conducted by adjusting several setting parameters. When transport air gap 0 was adjusted to 2 and 5, CV(%) were 20.16, 12.54 and when system air gap 0 was adjusted to 2 and 5, CV(%) were 8.94, 1.36. When adjusted to system air gap 2, transport air gap 2 was 12.96 and adjusted to system air gap 5, Transport air gap 5 was 1.33. When dispense speed was adjusted 300 to 100, CV(%) was 13.32 and when dispense delay was adjusted 200 to 100 was 13.55. When compared (B) to (A), the result increased 99.44% and %RE was 93.59%. When compared (C-system air gap was adjusted 0 to 5) to (A), the result increased 6.75% and %RE was 5.10%. Conclusion Adjusting speed and delay time of aspiration and dispense was meaningless but changing system air gap was effective. By adjusting several parameters proper value was found and it affected the practical result of the experiment. To optimize the system active efforts are needed through the test and in case of dispensing new types of liquids proper test is required to check the liquid is suitable for using the equipment.

  • PDF