• Title/Summary/Keyword: Air-Cooled system

Search Result 225, Processing Time 0.027 seconds

A Survey on the Actual Administrating Condition and Teacher′s Recognition on the In-service Training of Home Economics Education in the Secondary School - Centering around Kangwon Province- (중등학교 가정교과 교사의 직무연수 운영 실태 및 인식 조사 - 강원도 지역을 중심으로-)

  • 최미선;윤인경
    • Journal of Korean Home Economics Education Association
    • /
    • v.13 no.2
    • /
    • pp.85-99
    • /
    • 2001
  • The purpose of this research is intended to analyze the actual condition of in-service training for the teachers who teach Home Economics Education in the middle and high school and to survey their viewpoints on the actual condition of the in-service training. So I could find the effective ways on the in-service training by finding many kinds of needs and improvements on the basis of present problems in the Home Economics Education. The research results are as follows : 1. This research indicated that most teachers answered that the most proere significant per time of the in-service training was the school vacations(49.5%). 63.4% of the teachers answered that the present 60 hours on the question of how many hours are appropriate is proper. On the question of what the most proper cycle for the educational training is. 47.2% of the teachers answered that the present 3-year cycle is appropriate. 35% of them supported the selecting system for the trainee according to the experienced or non-experienced for the up-to-date in-service training. And 35% of them answered that the speakers for the training program must be the experienced teachers in education. In the contents of the training program. many teacher insisted that the percentage of the text for the major should be raised(49.6%). According to the survey about the teaching and learning methods and evaluation. teachers were satisfied with the levels of satisfaction on the teaching and learning methods in 65.1%. This survey indicated that teacher preferred the discussion and case study(35.9%). the practice-centered class(29.3%) and the on-the-spot study(20.9%) in order on the teaching methods. In terms of the educational environment. 56.9% of the teachers answered the number of trainee is too many and they suggested that the proper number of trainee is about 20∼30. 2. This research showed that the most important problem of this training system was the over-population of the trainee(33.5%) and the most severe problem of the educational environment was the lack of air-cooled and heated system(24.8%).

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2008 (설비공학 분야의 최근 연구 동향: 2008년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il;Choi, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.715-732
    • /
    • 2009
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2008. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends in thermal and fluid engineering have been surveyed in the categories of general fluid flow, fluid machinery and piping, new and renewable energy, and fire. Well-developed CFD technologies were widely applied in developing facilities and their systems. New research topics include fire, fuel cell, and solar energy. Research was mainly focused on flow distribution and optimization in the fields of fluid machinery and piping. Topics related to the development of fans and compressors had been popular, but were no longer investigated widely. Research papers on micro heat exchangers using nanofluids and micro pumps were also not presented during this period. There were some studies on thermal reliability and performance in the fields of new and renewable energy. Numerical simulations of smoke ventilation and the spread of fire were the main topics in the field of fire. (2) Research works on heat transfer presented in 2008 have been reviewed in the categories of heat transfer characteristics, industrial heat exchangers, and ground heat exchangers. Research on heat transfer characteristics included thermal transport in cryogenic vessels, dish solar collectors, radiative thermal reflectors, variable conductance heat pipes, and flow condensation and evaporation of refrigerants. In the area of industrial heat exchangers, examined are research on micro-channel plate heat exchangers, liquid cooled cold plates, fin-tube heat exchangers, and frost behavior of heat exchanger fins. Measurements on ground thermal conductivity and on the thermal diffusion characteristics of ground heat exchangers were reported. (3) In the field of refrigeration, many studies were presented on simultaneous heating and cooling heat pump systems. Switching between various operation modes and optimizing the refrigerant charge were considered in this research. Studies of heat pump systems using unutilized energy sources such as sewage water and river water were reported. Evaporative cooling was studied both theoretically and experimentally as a potential alternative to the conventional methods. (4) Research papers on building facilities have been reviewed and divided into studies on heat and cold sources, air conditioning and air cleaning, ventilation, automatic control of heat sources with piping systems, and sound reduction in hydraulic turbine dynamo rooms. In particular, considered were efficient and effective uses of energy resulting in reduced environmental pollution and operating costs. (5) In the field of building environments, many studies focused on health and comfort. Ventilation. system performance was considered to be important in improving indoor air conditions. Due to high oil prices, various tests were planned to examine building energy consumption and to cut life cycle costs.

IoT-based Smart Switchboard Development for Power Supply of Entertainment Devices (엔터테인먼트 장치의 전원 공급을 위한 IoT 기반의 스마트 배전반 개발)

  • Kang, Yun-Jeong;Lee, Kwang-Jae;Choi, Dong-Oun
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.3
    • /
    • pp.311-321
    • /
    • 2021
  • In this study, a smart switchboard for power supply of entertainment devices was developed for the following purposes. First, the heat generated when the high-temperature and humid air inside is cooled by the thermoelectric module is smoothly discharged to the outside of the switchboard, thereby maximizing the cooling effect. So, it is possible to prevent excessive temperature rise inside the switchboard. Various problems such as condensation inside the switchboard can be prevented by controlling the temperature of the switchboard in which a fire occurs due to excessive heat in summer, removing moisture due to the cooling effect, and generating heat instead of cooling in winter. Second, it is a smart switchboard control system that can reduce the salt that may permeate inside the switchboard. Third, the smart switchboard system is an IoT-controlled switchboard that collects environmental data using a variety of sensors and can remotely control devices through a smartphone, and can be easily used in various fields.

Cooling Performance Characteristics of High-Performance Heat Pump with VI Cycle Using Re-Cooler (재냉기를 이용한 고성능 VI(Vapor Injection)사이클 열펌프의 냉방 성능특성에 관한 연구)

  • Lee, Jin-Kook;Choi, Kwang-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.592-598
    • /
    • 2015
  • In this study, we experimentally investigate the performance characteristics of a high-performance summer-cooling heat pump for an R410A by applying an air-cooled-type vapor-injection (VI) cycle. The devices used for the experiment consist of a VI compressor, condenser, oil separator, plate-type heat-exchanger, economizer, evaporator, and re-cooler. The experimental conditions employed for the cooling performance were divided into three cycles. First, in Cycle A, we apply a VI cycle and with no heat exchange between the evaporator outlet refrigerant and the VI cycle suction refrigerant in the re-cooler. For Cycle B, there is heat exchange, and for Cycle C, there is neither a VI cycle nor heat exchange between the evaporator outlet refrigerant and the VI cycle suction refrigerant. From the analysis results, we observe that the performance was highest in the VI cycle with heat exchange between the evaporator outlet refrigerant and the VI cycle suction refrigerant (Cycle B), while it was lowest in Cycle C without application of the VI cycle. Moreover, the cooling coefficient of Performance ($COP_C$) averaged 3.5 in Cycle B, which was 8.6% higher than the corresponding value in Cycle A, and 33% higher than that in Cycle C.

Cryopreservation of Zona-intact/-free Hamster Oocytes;Effect of 1-Step Equilibration and 2-Step Thawing (투명대 존재/부재 햄스터 난자의 동결보존;1-단계 평형과 2-단계 융해의 효과)

  • Chung, K.M.;Pang, M.G.;Kim, S.H.;Shin, C.J.;Kim, J.G.;Moon, S.Y.;Lee, J.Y.;Chang, Y.S.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.19 no.2
    • /
    • pp.143-152
    • /
    • 1992
  • The present experiments were focussed to modify a short slow-cooling protocol used for freezing of early stage embryo(Testart et al., 1986) and also to apply the modified method for the cryopreservation of hamster oocytes with Zona or without. The protocol was modified by changing the 4-step equilibration into 1-step and the 1-step thawing into 2-step. The oocytes were added in 1.5M PROH and 0.1M Sucrose, seeded at $-7^{\circ}C$, slow cooled($0.3^{\circ}C$/min) to $-30^{\circ}C$ before plunging to $-196^{\circ}C$. The oocytes were thawed at $23-25^{\circ}C$ air(20sec/150sec) and/or 33-35 water(10sec). The survival of the frozen-thawed oocytes was determined by morphologic criteria and their fertilizing ability was also estimated by Sperm Penetration Assay(SPA) system(Chang et al, 1990) using fertile men semen sample. One-step equilibration showed slightly higher survival rate(83.9% vs. 71.0%) and fertilization rate(83.9% vs. 71.0%) compared with four-step(p>0.05). And two-step thawing(air & water exposing) of oocytes frozen after 1-step equilibration showed significantly higher survival rate(96.3%) than one-step thawing at air(85.2%) or water(65.0%) only(p<0.05). Therefore, by the modified method(l-step equilibration & 2-step thawing), Zona-intact(ZI) and Zona-free(ZF) oocytes were frozen and thawed. ZI-oocytes showed significantly higher survival rate(95.4%, 308/323 vs. 67.6%, 240/355) than ZF-oocytes(P<0.01). But the survival of ZF-oocytes was as high as ZI-oocytes in fourteen of twenty-four replicates. ZI-oocytes was also significantly higher fertilization rate($92.4{\pm}8.9%$ vs. $63.7{\pm}18.5%$) and higher mean number of penetrated sperm($6.2{\pm}4.2$ vs. $3.9{\\pm}3.3$) than ZF-oocytes, but not higher than control(fresh oocytes;$99.3{\pm}2.4%$, $8.4{\pm}4.2$)(P<0.001). Conclusively, this modified method will contribute to freeze effectively the hamster oocytes for simplifing of the logical consideration of performing SPA and also to freeze the human and other animal oocytes.

  • PDF

A Study on the Surface-Radiation Heat Transfer Characteristics in an Open Cavity with a Heat Source (발열체가 존재하는 개방된 정사각형공간에서 표면복사 열전달 특성에 관한 연구)

  • Nam, Pyoung-Woo;Park, Myoung-Sig;Park, Chan-Woo
    • Solar Energy
    • /
    • v.12 no.3
    • /
    • pp.70-83
    • /
    • 1992
  • The interaction between the surface radiation and the mixed convection transport from an isolated thermal source, with a uniform surface heat flux input and located in a rectangular enclosure, is stuied numerically. The enclosure simulates a practical system such an air cooled electric device, where an air-stream flows through the openings on the two vertical walls. The heat source represents an electric component located in such an enclosure. The size of this cavity is $0.1[m]{\times}0.1[m]$. The inlet velocity is assumed as 0.07[m/s] and the inlet temperature is maintained as $27^{\circ}C$. The inflow is kept at a fixed position. Laminar, two dimensional flow is assumed, and the problem lies in the mixed convection regime, governed by buoyancy force and surface readiation. The significant variables include the location of the out-flow opening, of the heat source and the wall emissivity. The basic nature of the resulting interaction betwwn the externally induced air stream and the buoyancy-driven flow generated by the source is investigated. As a result, the best location of the heat source to make the active heat transfer is 0.075[m] from the left wall on the floor. The trends observed are also discussed in terms of heat removal from practical systems such as electric circuitry.

  • PDF

Structural and Electrical Properties of Zn-Mn-O System Ceramics for the Application of Temperature Sensors (온도센서로의 응용을 위한 Zn-Mn-O계 세라믹의 구조적, 전기적 특성)

  • Kim, Kyeong-Min;Lee, Sung-Gap;Lee, Dong-Jin;Park, Mi-Ri;Kwon, Min-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.470-475
    • /
    • 2016
  • In this study, $Zn_xMn_{3-x}O_4$ (x=0.95~1.20) specimens were prepared by using a conventional mixed oxide method. All specimens were sintered in air at $1,200^{\circ}C$ for 12 h and cooled at a rate of $2^{\circ}C/min$ to $800^{\circ}C$, subsequently quenching to room temperature. We investigated the structural and electrical properties of $Zn_xMn_{3-x}O_4$ specimens with variation of ZnO amount for the application of NTC thermistors. As results of X-ray diffraction patterns, all specimens showed the formation of a complete solid solution with tetragonal spinel phase. And, the second phase was observed by the solubility limit of Zn ions in $x{\geq}1.10$ composition. The average grain size was increased from $2.72{\mu}m$ to $4.18{\mu}m$ with increasing the compositional ratio of Zn ion from x=0.95 to 1.20, respectively. $Zn_{1.10}Mn_{1.90}O_4$ specimen showed the minimum electrical resistance of $57.5k{\Omega}$ at room temperature and activation energy of 0.392 eV.

A Study on the Thermo-Flow Analysis of Air Conditioning Electric Compressor Motor System for Hybrid Electric Vehicles (하이브리드 자동차 에어컨용 전동식 압축기 모터 시스템의 열유동 해석 연구)

  • Kim, Sung Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.592-597
    • /
    • 2013
  • The heat generated at the motor and inverter inside the electric compressor of inverter built-in type is mainly cooled by refrigerant and generally, there is not a thermal problem. However, the close relation of heat transfer from the motor and inverter parts to the compression part affects on compressor efficiency. Also, according to the surrounding environment and system operation condition, the increased temperature of the motor and inverter can affect the power density of the motor system, and especially, the inverter may be prevented to operate by the temperature limits. In this study, we performed thermo-flow analysis of electric compressor motor system, and investigated the heat dissipation enhancement of the motor and inverter. The motor part in the operation region of the electric compressor was generally maintained at low temperature and the inverter part at high compressor speed was lower temperature than the temperature limit of $85^{\circ}C$. However, the case of the inverter at low speed harsh condition was in excess of $10^{\circ}C$. Therefore, in order to solve the thermal problem, the heat reduction technology of the motor and inverter is essential as well as the improvement of flow path in the compressor.

Study on the energy-saving constant temperature and humidity machine operating characteristics (에너지 절감형 항온항습기 운전 특성에 관한 연구)

  • Cha, Insu;Ha, Minho;Jung, Gyeonghwan
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.27-33
    • /
    • 2016
  • The heat recovery system that was applied in this study, is the energy-saving type that can produce the maximum cooling capacity less power in use. In order to have a more precise control function the temperature and humidity of the constant temperature and humidity machine, control algorithm is applied to designed a fuzzy PID controller, and the outside air compensation device (air-cooled) demonstrated excellent ability to dehumidify the moisture, $-20^{\circ}C$ in winter. High efficiency and the low-noise type sirocco fan operate quitely and designed to fit the bottom-up and top-down in accordance with the characteristics of equipment. as a result of experiment data, the conversion efficiency is 95% or more, power recovery time is within 5sec, stop delay time is within 30sec, pump down time is 10sec, pump delay time is 5sec, heating delay time is 5sec, temperature deviation is ${\pm}2^{\circ}C$ (cooling deviation: $2^{\circ}C$, Heating deviation : $2^{\circ}C$), humidity deviation is a ${\pm}5%$ (humidification deviation 3.0%, dehumidification deviation 3.0%). Recently, ubiquitous technology is important. so, the constant temperature and humidity machine designed to be able to remotely control to via the mobile phone, and more scalable to support MMI software and automatic interface. Further, the life of the parts and equipment is extended by the failure.

Dehumidification and Temperature Control for Green Houses using Lithium Bromide Solution and Cooling Coil (리튬브로마이드(LiBr) 용액의 흡습성질과 냉각코일을 이용한 온실 습도 및 온도 제어)

  • Lee, Sang Yeol;Lee, Chung Geon;Euh, Seung Hee;Oh, Kwang Cheol;Oh, Jae Heun;Kim, Dea Hyun
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.337-341
    • /
    • 2014
  • Due to the nature of the ambient air temperature in summer in korea, the growth of crops in greenhouse normally requires cooling and dehumidification. Even though various cooling and dehumidification methods have been presented, there are many obstacles to figure out in practical application such as excessive energy use, cost, and performance. To overcome this problem, the lab scale experiments using lithium bromide(LiBr) solution and cooling coil for dehumidification and cooling in greenhouses were performed. In this study, preliminary experiment of dehumidification and cooling for the greenhouse was done using LiBr solution as the dehumidifying materials, and cooling coil separately and then combined system was tested as well. Hot and humid air was dehumidified from 85% to 70% by passing through a pad soaked with LiBr, and cooled from 308K to 299K through the cooling coil. computational Fluid Dynamics(CFD) analysis and analytical solution were done for the change of air temperature by heat transfer. Simulation results showed that the final air temperature was calculated 299.7K and 299.9K respectively with the deviation of 0.7K comparing the experimental value having good agreement. From this result, LiBr solution with cooling coil system could be applicable in the greenhouse.