• Title/Summary/Keyword: Air-Assisted Fuel Injection

Search Result 8, Processing Time 0.016 seconds

A Study on the Lean Combustion of the Gasoline Engine with Air Assisted Fuel Injection System (공기 보조 연료 분사 장치가 있는 가솔린 기관의 희박 연소에 관한 연구)

  • Kim, S.W.;Kim, E.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.117-123
    • /
    • 1994
  • This paper describes the effect of air assisted fuel injection system(AAI) using compressed air to improve the performance of lean combustion engine. AAI is designed to promote fuel atomization and intake flow. In order to investigate the performance of engine with AAl, experiments are conducted varying the engine revolution speed, lean air-fuel ratio and intake manifold pressure. Compared with the original engine, the performance of the engine with MI is improved as the air-fuel mixture becomes leaner or the engine load becomes lower. The descreasing rate of BSFC is propotional to the relative air-fuel ratio and the lean misfire limit extended more than 0.2 relative airfuel ratio.

  • PDF

The Effect of the Air Temperature and Air-assisted Pressure on the Fuel Droplet Atomization (분무 공간의 공기온도와 보조공기의 공급압력이 연료입자의 미립화에 미치는 영향)

  • Kim, Y.S.;Lee, J.S.;Yoon, S.H.;Chung, S.S.;Ha, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.3 no.4
    • /
    • pp.16-24
    • /
    • 1998
  • The fuel injection type, in the gasoline engines of atomization of fuel droplet and its distribution hae influenced directly on the decision of engine performance and harmful emission. In this paper, atomization characteristics of fuel spray is investigated with microscopic visualization system. Particle motion analysis system is used to measure the SMD from fuel spray of air-assisted injector by initial factors such as temperature of ambient air and air-assisted pressure. As air-assist pressure and ambientair temperature increase, the SMD is decreased, and its variation is more stable.

  • PDF

A Study of Spray Characteristics of Injector on the Air-assisted Pressure Variation (보조 공기 압력 변화에 따른 인젝터의 분무 특성에 관한 연구)

  • Yoon, S.H.
    • Journal of ILASS-Korea
    • /
    • v.3 no.4
    • /
    • pp.58-64
    • /
    • 1998
  • In the gasoline engine of fuel injection type, atomization of fuel droplet and its distribution has directly influenced the performance of engine and harmful emission. To investigate atomization characteristics of fuel spray, in this paper fuel spray of air-assisted injector is observed at the various initial conditions of ambient air temperature and air assisted pressure. Behavior of fuel spray is photographed with microscopic visualization system. The SMD of fuel droplet is measured with PMAS (Particle Motion Analysis System). The effect of air-assisted pressure and temperature of ambient air resulted in the decrement of SMD and its variation. Finally, It was found that It was found that from spray angle at the two-hole injector had measured $20{\pm}4$ degree the result of photographs by shadow graphy. The mean diameter of suns decreased and the of droplets increased with increasing the temperature in the spray fields by the results of PMAS measurement. It was found that the characteristics of sprays became finer by increasing the temperature of spray fields about 373K without the delivery of air-assistance.

  • PDF

A Study on the Atomization and Combustion Characteristics of Air-assisted Injector in MPI Engine (MPI 엔진용 공기 보조 인젝터의 분무 미립화 및 연소 특성에 관한 연구)

  • 서영호;이창석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.52-58
    • /
    • 1998
  • The spray characteristics of air-assisted fuel injection and its effects on the engine combustion was investigated in this study. The atomization characteristics of a Bosch fuel injector inserted into the air-assist adapter were measured using particle motion analysis system. Droplet size decreased with air supplied and fine spray with below $60\mu\textrm{m}$ of SMD was acquired under the conditions of air-assist pressure over 0.5bar. The lean combustion performance of a 1.8L DOHC engine equipped with air-assist adapters was tested on the dynamometer. When the assistant air pressure is 1.0bar, lean limit recorded the highest value, and CO, HC emissions were decreased at the pressure over 1.0bar.

  • PDF

Investigation on the Sauter Mean Diameter of an Air-Assisted Fuel Injector -Operating Parameter Consideration (운전조건에 따른 공기보조 분사기의 Sauter 평균입경에 대한 고찰)

  • 장창수;최상민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.42-50
    • /
    • 2000
  • Drop size distribution of an air-assisted fuel injector(AAFI) was investigated. Influence of parameters such as ambient air density supply pressure and air-liquid mass ratio(ALR) was examined through both measurement and analysis. The Sauter mean diameter$D_{32}$ varied from 9 to 25$\mu$m throughout all experimental conditions. An empirical correlation for droplet size was obtained. Analytical correlations for predicting $D_{32}$ with respect to operating conditions were also derived through energy consideration and introduction of a simplified model of the from the empirical fitting was adapted to the original equation the proposed correlation in this study matched more closely with measured results. The current correlation exhibited a favorable study matched more closely with measured results. The current correlation exhibited a favorable prediction for $D_{32}$ compared to that by the empirical correlation at selected experimental conditions so that it may be used to predict atomization performance of the AAFI at operating conditions which was not covered in the measurements. After validation the analytical equation was applied to survey the feasible operating conditions for gasoline direct injection application.

  • PDF

Comparison of Overall Characteristics between an Air-Assisited Fuel Injector and a High-Pressure Swirl Injector-Part I: Flow rate and Macroscopic Spray Characteristics (공기보조 분사기와 고압 선회식 분사기의 특성 비교- Part 1:유량 및 거시적 분무특성)

  • 장창수;최상민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.20-27
    • /
    • 2000
  • Characteristics of two favorite injection tools for gasoline direct injection application were compared. An air-assisted fuel injector (AAFI) and a high-pressure swirl injector (HPSI) were designed and fabricated for prototype development, and the characterization strategies and processes for both injection tool have been arranged in parallel. Characterization works were carried out mainly through measurements, and in some cases, computational fluid dynamic analysis was utilized. In this paper, overall characteristics defined as flow rate, spray pattern, penetration, internal spray structure and drop size distribution, was discussed. The AAFI was found to be advantageous in flexibility of fuel flow rate, and the HPSI in stability and precision. Spray shape factor was introduced to describe the development of intermittent sprays from both injectors. Axial penetration appeared to be almost linear in the case of the AAFI while its speed continuously decreased with time in the HPSI.

  • PDF

Comparison of Overall Characteristics between an Air-Assisted Fuel Injector and a High-Pressure Swirl Injector- Part II: Microscopic Spray Characteristics (공기보조 분사기와 고압 선회식 분사기의 특성 비교 - Part II: 미시적 분무특성)

  • 장창수;최상민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.28-35
    • /
    • 2000
  • As a second part of the comparison study, microscopic features of an air-assisted fuel injector(AAFI) and a high-pressure swirl injector (HPSI) were characterized. They consist of the internal spray structure in terms of fuel mass and drop diameter, the overall atomization performance with respect to operating parameters and the drop size distribution. Large droplets are concentrated in around the head part of a spray field of the HPSI, while in the case of the AAFI, they were distributed in the tail part. Although the AAFI showed the better atomization performance, the feasible ranges of operating parameters such as injection and ambient pressure were found to be wider in the HPSI. Drop size distribution of the AAFI sprays was more dispersed than that of the HPSI. Drop size distribution of the AAFI sprays was more dispersed than that of the HPSI. However, at the well-atomized condition, it appeared to be very uniform.

  • PDF

Comparison of Spray Angles of Multihole Port Fuel Gasoline Injector with Different Measuring Methods (측정방법에 따른 흡기포트 분사식 다공 가솔린인젝터의 분무각 비교)

  • Kim, J.H.;Rhim, J.H.;No, S.Y.;Moon, B.S.
    • Journal of ILASS-Korea
    • /
    • v.5 no.3
    • /
    • pp.17-26
    • /
    • 2000
  • The main parameter commonly used to evaluate spray distribution is spray angle. Spray angle is important because it influences the axial and radial distribution of the fuel. Spray angles were measured and compared for the two non-air assisted injectors such as 2hole-2stream 4hole-1stream injectors used for port fuel injection gasoline engines with n-heptane as a fuel by three different measuring techniques, i.e., digital image processing, shadowgraphy, and spray patternator, respectively. Fuel was injected with the injection pressures of 0.2-0.35 MPa into the room temperature and atmospheric pressure environment. In digital image processing approach, the selection of the transmittance level is critical to obtain the edge of spray and hence to measure the spray angle. From the measurement results by the shadowgraphy technique, it is dear that the spray angle is varied during the spray injection period. The measurement results from spray patternator show that the different spray angles exist in different region. Spray angle increases with the increase in the injection pressure. it is suggested that the spray angle and stream separated angle should be specified when spray is characterized for 2hole-2stream injector, because spray angle is much different though stream separated angle is same. It was also considerably affected by the measurement techniques introduced in this experimental work. However, the optimal axial distance for measuring the spray angle seems to be at least 60-80 mm from the injector tip for two non-air assisted injectors.

  • PDF