• Title/Summary/Keyword: Air volume

Search Result 2,288, Processing Time 0.035 seconds

Comparative Analysis of the Optical Aging Patterns in Different Partitions of the Beeswax-Treated Volume during Dry Heating Aging at $105^{\circ}C$ (건식 인공열화 시 밀랍본 시제품의 제본부위별 광학적 특성변화 비교분석)

  • Choi, Kyoung-Hwa;Jeong, Hye-Young;Kang, Yeong-Seok;Cho, Jung-Hye
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.98-105
    • /
    • 2011
  • Patterns and levels of aging vary between the book volume and sheets, even though both are made from the same paper materials. In case of book format, the outside is more easily affected than inner side by environmental factors such as temperature, humidity and air. In this study, the change in optical properties after dry heating accelerated aging was comparatively analyzed to understand the difference of the optical aging characteristics between outside and inner side of the duplicated beeswax-treated volume. It is found that the cover pages of the beeswax-treated volumes were more optically deteriorated than their middle pages. This indicates that outer sides of aging book volume directly exposed to the air is more vulnerable to serious deterioration than inner sides. Also, aromatic compounds such as benzoic acid and cinnamic acid were observed in the investigation of UV/VIS absorbance of the beeswax in each aged sample.

The Volume Measurement of Air Flowing through a Cross-section with PLC Using Trapezoidal Rule Method

  • Calik, Huseyin
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.872-878
    • /
    • 2013
  • In industrial control systems, flow measurement is a very important issue. It is frequently needed to calculate how much total fluid or gas flows through a cross-section. Flow volume measurement tools use simple sampling or rectangle methods. Actually, flow volume measurement process is an integration process. For this reason, measurement systems using instantaneous sampling technique cause considerably high errors. In order to make more accurate flow measurement, numerical integration methods should be used. Literally, for numerical integration method, Rectangular, Trapezoidal, Simpson, Romberg and Gaussian Quadrature methods are suggested. Among these methods, trapezoidal rule method is quite easy to calculate and is notably more accurate and contains no restrictive conditions. Therefore, it is especially convenient for the portable flow volume measurement systems. In this study, the volume measurement of air which is flowing through a cross-section is achieved by using PLC ladder diagram. The measurements are done using two different approaches. Trapezoidal rule method is proposed to measure the flow sensor signal to minimize measurement errors due to the classical sampling method as a different approach. It is concluded that the trapezoidal rule method is more effective than the classical sampling.

A study on Pb, Zn and Fe Concentrations of Ambient Air Adjacent to Heavy Traffic Road Side in Seoul (서울시 주요 도로변 대기중 납, 아연 및 철 농도에 관한 조사연구)

  • 조준호;박석환;정문식
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.2
    • /
    • pp.110-117
    • /
    • 1998
  • This study was carried out to investigate the concentrations of TSP, Pb, Zn and Fe in ambient air adjacent to the heavy traffic road side in Seoul from October 1 to October 31, 1997. The results were as follows 1. The concentrations of TSP were 260 $\mu g/m^3$, 184 $\mu g/m^3$, 147 $\mu g/m^3$ in Chongro, Chungkechun and Kangnam-terminal, respectively. The concentration of TSP was correlated with the traffic volume of the sampling sites (r=0.77). 2. The concentrations of Pb were 638 ng/m$^3$, 335 ng/m$^3$, 233 ng/m$^3$ in Chungkechun, Kangnam-terminal and Chongro, respectively. The concentration of Pb was correlated with the Truck (over 1.4 ton) volume of the sampling sites (r=0.71). The Pb contents among these sites were significantly different (p < 0.05). 3. The concentrations of Zn were 535 ng/m$^3$, 461 ng/m$^3$, 439 ng/m$^3$ in Chongro, Kangnam-terminal and Chungkechun, respectively. The concentration of Zn was badly correlated with the traffic volume of the sampling sites (r=0.23). 4. The concentrations of Fe were 5.32 $\mu g/m^3$, 4.51 $\mu g/m^3$ and 3.18 $\mu g/m^3$ in Chongro, Kangnam-terminal and Chungkechun, respectively. The concentration of Fe was correlated with the traffic volume of the sampling sites (r=0.83). The Fe contents among these sites were significantly different (p < 0.05). 5. The concentrations of TSP, Pb, Zn, Fe investigated didn't exceed the Korean Ambient Air Quality Standards, but more researches in relation to these will be required in considering people working in these sites suffered from cough, asthma and chronic headache.

  • PDF

Filtration Efficiency of Granular Activated Carbons to Polydisperse Ultrafine Particles through the Surface Adsoprtion (그래뉼 타입 활성탄 필터의 100 나노 미만 다분산 초미세먼지 표면흡착 제거 효율 연구)

  • Cho, Kyungil;Kang, Giwon;Shin, Jiyoon;Kim, Changhyuk
    • Particle and aerosol research
    • /
    • v.18 no.3
    • /
    • pp.79-86
    • /
    • 2022
  • Many commercial air purifiers currently have deployed granular activated carbon (GAC) filters for removing volatile organic compounds in the indoor air. GACs are generally used to remove gaseous contaminants in the air through adsorption by the inner surfaces of pores. In addition, airborne particles can be also filtered by the surface adsorption of the GACs, which can improve the life-time of the particulate filters. In this study, the filtration efficiency of GACs to ultrafine particles through surface adsorption was investigated at different volume flow rates by deploying a continuous particle filtration system. The polydisperse sodium chloride (NaCl) particles were generated by a set of an atomizer and a diffusion dryer, and then mixed with particle-free air at different volume flow rates. The penetration of ultrafine particles and pressure drop for each experimental condition were measured to figure out the effect of the volume flow rate on the surface adsoprtion of the GACs to particles, ~ 2 mm. The particle filtration efficiency of the GACs decreased as the volume flow rate increased from 4 to 14 lpm. However, the 5 times thicker GAC filter layer decreased the penetration of ultraparticles than a preious study. The filtration efficiency of the single granule was also higher than the previous result in the literature with smaller granule filter materials.

A Numerical Study on Pressure Fluctuation and Air Exchange Volume of Door Opening and Closing Speeds in Negative Pressure Isolation Room (음압격리병실에서의 병실 문의 개폐속도에 따른 실간 압력변동 및 공기교환량에 대한 해석적 연구)

  • Kim, Jun Young;Hong, Jin Kwan
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.24 no.1
    • /
    • pp.51-58
    • /
    • 2018
  • Purpose: In this study, through the comparison of the pressure fluctuation and air exchange volume in negative isolation room according to the type of the door and door opening/closing speeds, which is one of the main factors causing the cross contamination of the negative pressure isolation room, establishes standard operating procedures to prevent cross contamination in high risk infectious diseases and isolation room design. Methods: In this study, the air flow each of the room is analyzed using ANASYS CFX CODE for flow analysis. In addition, the grid configuration of the door is constructed by applying Immersed Solid Methods. Results: The pressure fluctuation due to the opening and closing of the hinged door was very large when the moment of the hinged door opened and closed. Especially, at the moment when the door is closed, a pressure reversal phenomenon occurs in which the pressure in the isolation room is larger than the pressure in the anteroom. On the other hand, the pressure fluctuation due to the opening and closing of the sliding door appeared only when the door was closed, but the pressure reversal phenomenon not occurred at the moment when the sliding door was closed, unlike the hinged door. As the opening and closing speed of the hinged door increases, the air exchange volume is increased. However, as the opening and closing speed of the sliding door is decreased, the air exchange volume is increased. Implications: According to the results of this study, it can be concluded that the pressure fluctuation due to the opening and closing of the hinged door is greater than the pressure fluctuation due to the opening and closing of the sliding door. In addition, it can be confirmed that the pressure reversal phenomenon, which may cause to reduce the containment effect in negative pressure isolation room, is caused by the closing of the hinged door. Therefore, it is recommended to install a sliding door to maintain a stable differential pressure in the negative isolation room. Also, as the opening and closing speed of the hinged door is slower and the opening and closing speed of the sliding door is faster, the possibility of cross contamination of the room can be reduced. It is therefore necessary to establish standard operating procedures for negative isolation room for door opening and closing speeds.

Analyzing the Relationship between the Spatial Configuration of Urban Streets and Air Quality (도시가로의 형태요소와 대기질과의 관계 연구)

  • Chu, Junghyun;Oh, Kyushik;Jeong, Yeun-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.2
    • /
    • pp.73-82
    • /
    • 2009
  • The traffic volume of Seoul is extremely high in comparison to other major cities in Korea, and the result has been harmful physical and mental exposure to pollution by Seoulites on a regular basis. The street air pollution is more important than the others, because the air pollution generated by street traffic directly impacts the health of nearby pedestrians. This problem requires urgent attention and resolution. Among the factors creating the air pollution originating from the street, is the configuration of streets, which have emerged as the most significant because it is related to air and pollutant dispersion. Therefore, this study was conducted under the assumption that street form affects the air quality. Study sites were classified by street characteristics, and air quality was analyzed in each class. Then the OSPM (Operational Street Pollution Model) was employed to simulate the relationship between street configuration and air quality of streets within the old city center and new city center in Seoul. After that this study analyzed the correlation between air pollution and the spatial configuration of urban streets (ex. street width, building height, building density, etc.) to determine their contributions to air pollution. The outcome of this study is as follows : First, the result that was derived from the correlation analysis between street configuration and air quality hewed that the air pollution of the street is influenced by the average height of building, width of the roads as well as traffic volume. On the roadside, the concentration level of $NO_2$ is mainly affected by the average height of building and the deviation of building height along the street and CO is affected by street width. The outcome of this study can be used as a basis for more sound urban design policies, and the promotion of desirable street environments for pedestrians.

제너 다이오드를 이용한 공기 유속계측 장치개발

  • 김영재;김희식;조흥근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.496-500
    • /
    • 1996
  • An air flow measurement device is proposed. The thermal characteristic of a semiconductor element is adopted as a cooling parameter of thermal convection rate. The difference between forced convection and natural convection of two Zener diodes results enough difference in temperature. Experiment at various air flow conditions shows the measuring capability of the air flow in a duct. This measuring device has some merits, such as a reliability n hard field condition, simple circuit for signal processing, small volume of the element, less air flow resistance, independance of various ai temperature. The experimental result shows that it is an exact and usefull air flow measurement device.

  • PDF

Premixed Combustion Characteristics of Coal Gasification Fuel in Constant Volume Combustion Chamber (석탄가스화 연료의 정적 예혼합 연소특성)

  • Kim Tae-Kwon;Jang Jun-Young
    • Journal of Environmental Science International
    • /
    • v.15 no.6
    • /
    • pp.601-606
    • /
    • 2006
  • The coal gasification fuel is important to replace petroleum fuel. Also they have many benefits for reducing the air pollution. Measurements on the combustion characteristics of synthetic gas from coal gasification have been conducted as compared with LPG in constant volume combustion chamber. The fuel is low caloric synthetic gas containing carbon monoxide 30%, hydrogen 20%, carbon dioxide 5%, and nitrogen 45%. To elucidate the combustion characteristics of the coal gasification fuel, the combustion pressures, combustion durations, and pollutants(NOx, $CO_2$, CO) are measured with equivalence ratios($\phi$), and initial pressures of fuel-air mixture in constant volume chamber. In the case of the coal gasification fuel, maximum combustion pressure and NOx concentration are lower rather than LPG fuel. However CO and $CO_2$ emission concentration are similar to that of LPG fuel.

Design and Experimental Study on a Turbo Air Compressor for Fuel Cell Applications (연료전지용 터보 공기압축기의 설계 및 시험평가)

  • Choi, Jae-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.26-34
    • /
    • 2008
  • This study presents an aerodynamic design and an experimental performance test of a turbo air compressor consisted of mixed-flow impeller and curved diffuser for the PEM fuel cell vehicle application. Many studies compare the efficiency, cost or noise level of high-pressure and low-pressure operation of PEM fuel cell systems. Pressure ratio 2.2:1 is considered as design target The goal of compressor design is to enlarge the flow margin of compressor from surge to choke mass flow rate to cover the operational envelope of FCV. Large-scale rig test is performed to evaluate the compressor performance and to compare the effects of compressor exit pipe volume to stall or surge characteristics. The results show that the mixed-flow compressor designed has large flow margin, and the flow margin of compressor configuration with small exit volume is larger than that with large exit volume.

The Study about Colored Concrete Corresponding to the Various Temperatures for Plasticity and Additive Volume on the redmud (레드머드의 소성온도 및 첨가량변화에 따른 컬러콘크리트의 기초적 연구)

  • Kim, Tae-Cheong;Kim, Jong;Yeun, Kyu-Won;Yoon, Gi-Woon;Shin, Dong-An
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.585-588
    • /
    • 2008
  • This study investigated fundamental properties of the colored concrete Corresponding to the various temperatures for plasticity and additive volume of the redmud. the results were summarized as following. There was no difference on the air contents and slumpflow at each temperatures for plasticity. The color tone was high in accordance with increase of temperatures for plasticity, but the drying shrinkage length change was shown in the opposite tendency. The slumpflow was gradually declined, but the air content, compressive strength, color ton and drying shrinkage length change were overall increased when the additive volume of the redmud was increased.

  • PDF