• Title/Summary/Keyword: Air ventilation

Search Result 1,570, Processing Time 0.033 seconds

Analysis of Hygrothermal Performance for Standard Wood-frame Structures in Korea (국내 농어촌 표준 목조주택의 hygrothermal 성능 분석)

  • Chang, Seong Jin;Kang, Yujin;Wi, Seunghwan;Jeong, Su-Gwang;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.440-448
    • /
    • 2016
  • As recent buildings become more air tight, the natural ventilation rate is significantly reduced and it leads to difficulty in removing accumulated moisture in buildings. Hot and humid weather in summer and the large amount of moisture caused by indoor activity are the major factors of moisture problem in Korea. The hygrothermal behavior of building environment has to be considered carefully to reduce condensation risk and mold growth potential, and comfortable indoor environment. In this study, we evaluated hygrothermal behavior of Standard Wood-frame Structure published in the Korea Rural Community Corporation Using WUFI simulation program. The results indicated that the total water contents of wood wall measured in 2014 was lower than wood wall in 2010. As a result of evaluation by separating the farming and fishing areas, Moisture problems in fishing area became larger. The walls had a significant impact on the relative humidity than the temperature each areas. Furthermore, excessive water content problem of the wood-based material was reduced in the wall that could be applied in the fishing villages by changing the outdoor finishing materials. And Mold growth risk on the interior materials could be removed through the different setting of the indoor temperature during summertime.

Actual Utilization and Thermal Environment of Greenhouses According to Several Cooling Methods during Summer Season (하절기 온실의 활용실태 및 몇 가지 고온극복 방법별 열환경 분석)

  • 남상운
    • Journal of Bio-Environment Control
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • This study was performed to find an efficient method to overcome extremely high temperature in greenhouses during summer season. The actual utilization of greenhouses during hot summer season showed that about 21.6% of the investigated greenhouse farms were in fallow state, and most of greenhouse farms were cultivated under the very inferior environment. Thermal environment of greenhouses according to the evaporative cooling method and several assistant cooling methods such as ventilation, shading screen, roof sprinkling were examined. As the each assistant cooling method was used, about 74.8%, 25.9%, and 58.2% of temperatures measured at intervals of ten minutes between ten and seventeen o'clock were above 35$^{\circ}C$. When shading screen and evaporative cooling system were operated, most greenhouse air temperatures were maintained below 35$^{\circ}C$, and showed a drop of 3.8~4.2$^{\circ}C$ as compared with naturally ventilated greenhouse.

  • PDF

Cooling Efficiency and Growth of Tomato as Affected by Root Zone Cooling Methods in Summer Season (고온기 근권냉방방식에 따른 냉방효과와 토마토 생육)

  • 이재한;권준국;권오근;최영하;박동금
    • Journal of Bio-Environment Control
    • /
    • v.11 no.2
    • /
    • pp.81-87
    • /
    • 2002
  • This study was conducted to investigate the cooling efficiency and growth of tomatoes by root zone cooling device using a pad-box and cultivated system. The structure of the root zone cooling system using a pad-box was four piece of pads bonded an the side and a fan set at the bottom. Cool wind was generated by the outside air which was punched at intervals of 10 cm along three rows. Cold wind flowed to the root zone in the culture medium. The root zone cooling efficiency of cold wind generation by using a pad-box flowing through a wet-pad was determined. Major characteristic of this cuttural system consist of bed filled with a perlite medium and a ventilation pipe using PVC. The cold wind generation by a pad box (CWP) was compared to that of cold wind generation by a radiator (CWR), cold water circulation using a XL-pipe (CWX) and the control (non-cooling). When the temperature of water supplied was 16.2-18.4$^{\circ}C$, temperatures in the medium were 20.5~23.2$^{\circ}C$ for CWP 22.7~24.2$^{\circ}C$ for CWR, 22.8~24.27$^{\circ}C$ for CWX and 23.1~-29.6$^{\circ}C$ for the control. The results show that the cold wind temperature using the pad-box was lower by 1~2$^{\circ}C$ than that of cold water circulation in the XL-pipe and lower by 5~6$^{\circ}C$ than that of the control. Growth such as leaf length, leaf width, fresh weight and dry weight, was greater in three root zone cooling methods than in the control. Root activity was higher in the rat zone cooling methods than in the control. However, there was no significant difference among root zone cooling methods.

Development of an Aerodynamic Simulation for Studying Microclimate of Plant Canopy in Greenhouse - (1) Study on Aerodynamic Resistance of Tomato Canopy through Wind Tunnel Experiment - (공기유동해석을 통한 온실내 식물군 미기상 분석기술 개발 - (1) 풍동실험을 통한 토마토 식물군의 공기저항 연구 -)

  • Lee In-Bok;Yun Nam-Kyu;Boulard Thierry;Roy Jean Claude;Lee Sung-Hyoun;Kim Gyoeng-Won;Lee Seung-Kee;Kwon Soon-Hong
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.289-295
    • /
    • 2006
  • A computational fluid dynamics (CFD) numerical model has been developed to effectively study the ventilation efficiency of multi-span greenhouses with internal crops. As the first step of the study, the internal plants of the CFD model had to be designed as a porous media because of the complexity of its physical shapes. In this paper, the results of the wind tunnel tests were introduced to find the aerodynamic resistance of the plant canopy. The Seogun tomato was used for this study which made significant effects on thermal and mass exchanges with the adjacent air as well as internal airflow resistance. With the main factors of wind speed, static pressure, and density of plant canopy, the aerodynamic resistance factor was statically found. It was finally found to be 0.26 which will be used later as an input data of the CFD model. Moreover, the experimental procedure of how to find the aerodynamic resistance of various plants using, wind tunnel was established through this study.

Properties of Light-weight Expanded Bonded Leather Using Thermal Expandable Microspheres (열 팽창성 Microsphere를 적용한 경량 발포 재생피혁 특성 분석)

  • Shin, Eun-Chul;Kim, Won-Ju;Kim, Yeong-Woo
    • Journal of Adhesion and Interface
    • /
    • v.21 no.3
    • /
    • pp.81-85
    • /
    • 2020
  • Shaving dust is a collagen fiber that is the leather waste occurred for thickness adjustment during the natural leather manufacturing process, and causes problems such as an environmental contamination because of a chromium (Cr) contained when it comes to reclaiming process. Various studies applying the shaving dust are currently being conducted in many countries across the world with an initiative by the EU. Of those applications, the bonded leather is being highlighted as a substitute for natural leather. Since the bonded leather, however, uses latex as a binder, accordingly it entails a high weight and a poor ventilation, which are deemed as disadvantages due to its dense internal tissues compared to other synthetic leathers. To address such disadvantages, this study employed the thermally expandable micro sphere to improve its air permeability and light weight by alleviating the internal structure. This is a study on the manufacturing of light bonded leather using the shaving dusts. In the study, the shaving dusts were forced to foam under 100~120℃ considering the heat resistance of collagen fiber after applying the thermally expandable micro sphere, and then the tendency was analyzed. In the analysis results, the most excellent foaming rate was exhibited when the shaving dusts were treated under 120℃ for 8 minutes and the variation of internal structure according to a foaming was observed through SEM analysis for the cross-section of the bonded leather.

Exposure to Volatile Organic Compounds and Possibility of Exposure to By-product Volatile Organic Compounds in Photolithography Processes in Semiconductor Manufacturing Factories

  • Park, Seung-Hyun;Shin, Jung-Ah;Park, Hyun-Hee;Yi, Gwang-Yong;Chung, Kwang-Jae;Park, Hae-Dong;Kim, Kab-Bae;Lee, In-Seop
    • Safety and Health at Work
    • /
    • v.2 no.3
    • /
    • pp.210-217
    • /
    • 2011
  • Objectives: The purpose of this study was to measure the concentration of volatile organic compound (VOC)s originated from the chemicals used and/or derived from the original parental chemicals in the photolithography processes of semiconductor manufacturing factories. Methods: A total of four photolithography processes in 4 Fabs at three different semiconductor manufacturing factories in Korea were selected for this study. This study investigated the types of chemicals used and generated during the photolithography process of each Fab, and the concentration levels of VOCs for each Fab. Results: A variety of organic compounds such as ketone, alcohol, and acetate compounds as well as aromatic compounds were used as solvents and developing agents in the processes. Also, the generation of by-products, such as toluene and phenol, was identified through a thermal decomposition experiment performed on a photoresist. The VOC concentration levels in the processes were lower than 5% of the threshold limit value (TLV)s. However, the air contaminated with chemical substances generated during the processes was re-circulated through the ventilation system, thereby affecting the airborne VOC concentrations in the photolithography processes. Conclusion: Tens of organic compounds were being used in the photolithography processes, though the types of chemical used varied with the factory. Also, by-products, such as aromatic compounds, could be generated during photoresist patterning by exposure to light. Although the airborne VOC concentrations resulting from the processes were lower than 5% of the TLVs, employees still could be exposed directly or indirectly to various types of VOCs.

Identification of pathogen and actual culture state of king oyster mushroom (Pleurotus eryngii) (큰느타리버섯 주요재배시 실태조사 및 병원균 분리동정)

  • Ha, Tai-Moon;Chi, Jeong-Hyun;Ju, Young-Cheuol;Sung, Jae-Mo
    • Journal of Mushroom
    • /
    • v.4 no.4
    • /
    • pp.135-143
    • /
    • 2006
  • We have investigated cultural circumstance and given condition of king oyster mushroom(Pleurotus eryngii) growing farmer. We collected many pathogens from King oyster mushroom growing farmer and identified with chemicobiological test and microscope. Most of investigated farmers neglected their's growing room cleaning and washing, after harvesting At pin-heading induction time, humidity degree in growing room was kept of high level and Air ventilation volume was so little that fruit-body formation ratio was low. The collected pathogens were twenty eight strains and identified with Pseudomonas sp., Trichoderma sp. mostly. During the spawn running time and pin-heading induction time, contamination by Trichoderma sp. occurred mostly, but during the fruit-body growing time, contamination by Pseudomonas sp., Erwinia sp. etc, occurred.

  • PDF

Evaluation of Odor Reduction in the Enclosed Pig Building Through Spraying Biological Additives (생물학적 첨가제 살포에 의한 밀폐형 돈사에서의 악취 저감 평가)

  • 김기연;최홍림;고한종;이용기;김치년
    • Journal of Animal Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.467-478
    • /
    • 2006
  • Maintenance of an optimal air quality in the enclosed pig building is potentially important in terms of pig performance and farmer health. The objective of this on-site experiment is to evaluate and compare efficiencies of currently utilized biological additives to reduce odor emissions from the enclosed pig building. As a result, generally all the additives except for salt water, artificial spice and essential oil were proved ineffective in reducing odor generation. The beneficial effects of salt water, artificial spice and essential oil on odor reduction were highlighted on ammonia, odor intensity and offensiveness, and sulfuric odorous compounds, respectively. To efficiently utilize odor masking agent such as the artificial spice, ventilation rate should keep slightly lower than the optimal level. Essential oil functioned well as not only masking agent but also antimicrobial agent for reducing odor. To precisely quantify odor concentration, it should be measured by not the odor sensor but the olfactometry technique.

Patient's Satisfaction with Medical Care Services in Hospital (병원 이용자의 의료서비스 만족도 조사)

  • Sung, Jung-Ae;Nam, Chul-Hyun;Kim, Soung-Woo;Kim, Gui-Suk;Koo, Hyun-Jin;Yoo, Eun-Joo
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.10 no.1
    • /
    • pp.109-121
    • /
    • 2006
  • The purpose of this study was to determine factors influencing patient satisfaction with medical services in hospital, which is classified into environmental aspect, human services and procedural services. Based on the results of literature review, the study focused on effects of social-demographical factors on patient satisfaction. The environmental aspect of medical care services included medical equipment and facilities, hygiene, ventilation, heating and air-conditioning, waiting and resting space, ward space and parking facilities. Procedural service included registration process, bill payment, waiting time after registration, examination and prescription as well as appointment process. Human services consisted of physicians listening to stories of patients, examination duration, physicians' explanation and physicians' service. As for nurses, explanation about disease, examination procedure and results, kindness and nursing care were evaluated. Services provided by other staff members were also evaluated. Patient satisfaction, defined as individual attitude toward medical service as a whole, was measured using a questionnaire. A total of 700 in-or out-patients were surveyed in 6 hospitals with more than 300 beds in North Gyeongbuk Province. 1. The level of patient satisfaction varied with characteristics of patients. Male patients and those in their 30s had a low level of satisfaction. Dissatisfaction level was positively related to education level but negatively related to economic condition. 2. As for patient satisfaction with medical service providers and other employees in hospital, satisfaction level with physician's explanation about treatment was higher. But dissatisfaction levels with treatment duration and the lack of explanation about examination procedures were high, calling for improvement. Dissatisfaction level with nursing care was high, calling for training of nurses for better service. Given the low level of satisfaction with human services, hospital employees need to be trained to improve their service. 3. It Was found that administrative service was also a significant factor influencing patient satisfaction in addition to medical service. It is therefore important for hospitals to provide patients with prompt and convenient procedural service. 4. Environmental factors such as medical equipment and amenity facilities also affected patient satisfaction. Thus environmental condition, procedural service and human service are all important to improve medical service in hospital. In summary, procedural service was the most significant factor for patient satisfaction. The level of satisfaction in patients was also affected by human service and environmental condition. It is therefore necessary to take patient-oriented approach in providing medical service in an effort to improve patient satisfaction. The finding of a lower level of satisfaction with human service signifies the need for training of healthcare providers and other hospital employees for better services. The introduction of advanced management programs is also needed to improve procedures that patients go through in hospitals.

  • PDF

Effect of Row Covers on the Growth and Yield of Broccoli During Spring Culture (막덮기 재배가 봄재배시 녹색꽃양배추의 생육 및 수량에 미치는 영향)

  • 이정수;이재욱;성기철
    • Journal of Bio-Environment Control
    • /
    • v.11 no.4
    • /
    • pp.175-180
    • /
    • 2002
  • This study was conducted to examine the effect of row covering materials on the growth and yield of broccoli for early production in the open meld. Materials for plastic tunnel were row-covering (ventilating non-woven fabric), perforated film (2.3% pore space) and P.E. film. The types of row covers were tunnel and covering period was one months after transplanting. The row cover and perforated film increased daily air and soil temperature by 3~4$^{\circ}C$ and 2~3$^{\circ}C$, respectively as compared to no covering. Also, relative humidities in those treatments were higher than those in P.E. and no covering. The row covering and perforated film enhanced plant growth. Broccoli grew best and abnormal head appeared the least with row covering treatment. Days taken for head formation, however, did not differ between treatments but the weight of curd was over 400 g in the treatment of row covering and perforated film covering. Marketable yield doubled under row covering as compared to no covering. The first harvest time was earlier by two weeks in row-covering. The results of this experiment indicated that covering row-cover film in spring cultivation was effective fer not only yield increase but also quality evaluation in early production of broccoli.