• Title/Summary/Keyword: Air system model

Search Result 2,048, Processing Time 0.029 seconds

Optimization of drag reduction effect of air lubrication for a tanker model

  • Park, Seong Hyeon;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.427-438
    • /
    • 2018
  • The reduction of $CO_2$ emissions has been a key target in the marine industry since the IMO's MEPC published its findings in 2009. Air lubrication method is one of the mature technologies for commercialization to reduce the frictional resistance and enhance fuel efficiency of ships. Air layer is formed by the coalescence of the injected air bubbles beyond a certain air flow rate. In this study, a model ship (${\lambda}=33.33$) of a 50,000 ton medium range tanker is equipped with an air lubrication system. The experiments were conducted in the 100 m long towing tank facility at the Pusan National University. By selecting optimal air injector configuration and distribution ratio between two injectors, the total resistance of model $R_{TM}$ was able to be reduced down to 18.1% in the model scale. Key issue was found to suppress the sideway leakage of injected air by appropriate injection parameters.

Energy Saving Potential and Indoor Air Quality Benefits of Multiple Zone Dedicated Outdoor Air System

  • Lee, Soo-Jin;Jeong, Jae-Weon
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.1
    • /
    • pp.71-82
    • /
    • 2019
  • The purpose of this study is to evaluate the indoor air quality (IAQ) and energy benefits of a dedicated outdoor air system (DOAS) and compare them with a conventional variable air volume (VAV) system. The DOAS is a decoupled system that supplies only outdoor air, while reducing its consumption using an enthalpy wheel. The VAV system supplies air that is mixed outdoor and transferred indoor. The VAV has the issue of unbalanced ventilation in each room in multiple zones because it supplies mixing air. The DOAS does not have this problem because it supplies only outdoor air. That is, the DOAS is a 100% outdoor air system and the VAV is an air conditioning system. The transient simulations of carbon dioxide concentration and energy consumption were performed using a MATLAB program based on the thermal loads from the model predicted by the TRNSYS 18 program. The results indicated that when the air volume is large, such as in summer, the distribution of air is not appropriate in the VAV system. The DOAS however, supplies the outdoor air stably. Moreover, in terms of annual primary energy consumption, the DOAS consumed approximately 40% less energy than the VAV system.

Power consumption prediction model based on artificial neural networks for seawater source heat pump system in recirculating aquaculture system fish farm (순환여과식 양식장 해수 열원 히트펌프 시스템의 전력 소비량 예측을 위한 인공 신경망 모델)

  • Hyeon-Seok JEONG;Jong-Hyeok RYU;Seok-Kwon JEONG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.1
    • /
    • pp.87-99
    • /
    • 2024
  • This study deals with the application of an artificial neural network (ANN) model to predict power consumption for utilizing seawater source heat pumps of recirculating aquaculture system. An integrated dynamic simulation model was constructed using the TRNSYS program to obtain input and output data for the ANN model to predict the power consumption of the recirculating aquaculture system with a heat pump system. Data obtained from the TRNSYS program were analyzed using linear regression, and converted into optimal data necessary for the ANN model through normalization. To optimize the ANN-based power consumption prediction model, the hyper parameters of ANN were determined using the Bayesian optimization. ANN simulation results showed that ANN models with optimized hyper parameters exhibited acceptably high predictive accuracy conforming to ASHRAE standards.

Study on optimization technique for the design of ventilation system of subway (지하철 환기시스템의 최적화에 관한 연구)

  • 김광용;조재형;리쉬밍;양태윤
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.630-639
    • /
    • 1998
  • The present research aimed at development of a computer code for the optimal design of ventilation system based on one-dimensional analysis of the air flow. Model experiment and three-dimensional flow analysis have been implemented to determine loss coefficients that were needed for the optimization technique. A research on optimum shape of ventilation shaft has been also carried out through the three-dimensional analysis of the flow.

  • PDF

Development of HVAC System to Lower the Conveyance Energy and Building Height (반송동력과 건물층고 저감형 공조시스템 개발)

  • 김정엽;신현준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.2
    • /
    • pp.116-125
    • /
    • 2003
  • The new HVAC system to lower the conveyance energy and building height using IAV (Increasing Air Volume) technique is developed. IAV units which are equipped in each zone carry out air-conditioning and supply fresh air by induction of outdoor air in main duct. The design program which decides size of OAHU and IAV unit according to air conditioning load and fresh air demand of each zone is presented. The control system is developed to operate efficiently HVAC system and IAV unit, so that individual zone operation and well-deal with partial load and IAQ problem are possible. The new system is investigated in model building and makes more profit in conveyance energy, size of air conditioning facilities room and building height than VAV system. But in construction cost it is worse by about 15 per-centage.

Development of HVAC System to Lower the Conveyance Energy and Building Height

  • Kim, Jung-Yup;Shin, Hyun-Joon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.1
    • /
    • pp.31-43
    • /
    • 2005
  • The new HVAC system is developed to lower the conveyance energy and building height using IAV(Increasing Air Volume) technique. IAV units which are equipped in each zone carry out air-conditioning and supply fresh air by induction of outdoor air in main duct. The design program which decides size of OAHU and IAV unit according to air conditioning load and fresh air demand of each zone is presented. The control system is developed to operate efficiently HVAC system and IAV unit, so that individual zone operation and well-deal with partial load and IAQ problem are possible. The new system is investigated in model building and makes more profit in conveyance energy. size of air conditioning facilities room and building height than VAV system. But in construction cost it is worse by about 15 percentage.

Fault Diagnosis Algorithm of an Air-conditioning System by using a Neural No-fault Model and a Dual Fuzzy Logic (신경망무고장모델과 이중퍼지로직을 사용한 냉방기 고장진단 알고리즘)

  • Han Do-Young;Jung Nam-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.10
    • /
    • pp.791-799
    • /
    • 2006
  • The fault diagnosis technologies may be applied in order to decrease the energy consumption and the maintenance cost of an air-conditioning system. In this paper, a fault diagnosis algorithm was developed by using a neural no-fault model and a dual fuzzy logic. Five different faults, such as the compressor valve leakage, the liquid line blockage, the condenser fouling, the evaporator fouling, and the refrigerant leakage of an air-conditioning system, were considered. The fault diagnosis algorithm was tested by using a fault simulation facility. Test results showed that the algorithm developed for this study was effective to detect and diagnose various faults. Therefore, this algorithm may be practically used for the fault diagnosis of an air-conditioning system.

Modelling of System Air-Conditioner for Dynamic Simulation (동적시뮬레이션을 위한 시스템 멀티에어컨의 모델링)

  • Lee, Yoon-Jong;Kim, Chan-Jung;Moon, Je-Myung;Kim, Cheol-Woo;Seo, Hyeong-Joon;Kim, Gyoung-Rok;Shin, Haeng-Cho;Hong, Hi-Ki
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.328-333
    • /
    • 2007
  • The purpose of this study is modelling of system air-conditioner for TRNSYS. System air-conditioner is operated by a variable capacity compressor and accommodated by multiple evaporators. By reason of these feature, realizing performance of system air-conditioner for TRNSYS was incomplete. In this study performance data of system air-conditioner and control logics are used to make system air-conditioner module for TRNSYS. Performance data contains total capacity, power input and capacity index of system air-conditioner. The simulation was carried out in a mode of temperature level control using TRNSYS 16. The simulation shows that the system air-conditioner model operate variable capacity and can compute capacity index and power input of system.

  • PDF

Transient Simulation of an Automotive Air-Conditioning System (자동차 에어컨 비정상과정 시뮬레이션)

  • 오상한;원성필
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1089-1096
    • /
    • 2001
  • The cool-down performance after soaking is very important in an automotive air-conditioning system and is considered as the key design variable. Therefore, understanding of the overall transient characteristics of the system is essential to the preliminary design as well as steady-state characteristics. The objective of this study is to develop a computer simulation model and estimate theoretical1y the transient performance of an automotive air-conditioning system. To accomplish this, a mathematical modelling of each component, such as compressor, condenser, expansion valve, and evaporator, is presented first of all. For a detailed calculation, condenser and evaporator are divided into many subsections. Each sub-section is an elemental volume for modelling. In models of expansion valve and compressor, dynamic behaviors are not considered in an attempt to simplify the ana1ysis, but the quasi-static ones are just considered, such as the relation between mass flow rate and pressure drop in expansion device, polytropic process in compressor, etc. The developed simulation model is validated with a comparison to laboratory test data of an automotive air-conditioning system. The overall time-tracing properties of each component agreed fairly well wish those of test data in this case.

  • PDF

Model-based Fault Detection Method for the Air Supply System of a Residential PEM Fuel Cell (가정용 고분자전해질 연료전지 공기공급시스템의 모델 기반 고장 검출 기술)

  • WON, JINYEON;KIM, MINJIN;LEE, WON-YONG;CHOI, YOON-YOUNG;HONG, JONG SUP;OH, HWANYEONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.556-566
    • /
    • 2019
  • Recently, as the supply of residential polymer electrolyte membrane fuel cells (PEMFCs) increases, the durability and lifetime of the PEMFC system are becoming important. The related studies have been mainly focused on the durability and lifetime of materials while the research on the durability and maintenance of the system level is insufficient. In this paper, a model-based fault detection method is developed considering an air supply system that is dominant to the system performance and efficiency. A commercial 1 kW residential fuel cell system is built, and experiments are conducted under various operation loads and states (normal, 6 faults). From the experimental data, nominal models and residuals are generated. With the residual pattern obtained from real-time data, the detection and classification of various faults can be possible. The technical importance of this paper is to minimize extra sensor installation by using the empirical model rather than a complex mathematical model, and to decrease the number of models by using the applicable model at three loads. Finally, the model-based fault detection method for the air supply system of a PEMFC is established and is expected to be applicable to other subsystems.