• Title/Summary/Keyword: Air system model

Search Result 2,051, Processing Time 0.031 seconds

A Numerical Study on the Characteristics of Flows and Fine Particulate Matter (PM2.5) Distributions in an Urban Area Using a Multi-scale Model: Part II - Effects of Road Emission (다중규모 모델을 이용한 도시 지역 흐름과 초미세먼지(PM2.5) 분포 특성 연구: Part II - 도로 배출 영향)

  • Park, Soo-Jin;Choi, Wonsik;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1653-1667
    • /
    • 2020
  • In this study, we coupled a computation fluid dynamics (CFD) model to the local data assimilation and prediction system (LDAPS), a current operational numerical weather prediction model of the Korea Meteorological Administration. We investigated the characteristics of fine particulate matter (PM2.5) distributions in a building-congested district. To analyze the effects of road emission on the PM2.5 concentrations, we calculated road emissions based on the monthly, daily, and hourly emission factors and the total amount of PM2.5 emissions established from the Clean Air Policy Support System (CAPSS) of the Ministry of Environment. We validated the simulated PM2.5 concentrations against those measured at the PKNU-AQ Sensor stations. In the cases of no road emission, the LDAPS-CFD model underestimated the PM2.5 concentrations measured at the PKNU-AQ Sensor stations. The LDAPS-CFD model improved the PM2.5 concentration predictions by considering road emission. At 07 and 19 LST on 22 June 2020, the southerly wind was dominant at the target area. The PM2.5 distribution at 07 LST were similar to that at 19 LST. The simulated PM2.5 concentrations were significantly affected by the road emissions at the roadside but not significantly at the building roof. In the road-emission case, the PM2.5 concentration was high at the north (wind speeds were weak) and west roads (a long street canyon). The PM2.5 concentration was low in the east road where the building density was relatively low.

Forecasting of Daily Minimum Temperature during Pear Blooming Season in Naju Area using a Topoclimate-based Spatial Interpolation Model (공간기후모형을 이용한 나주지역 배 개화기 일 최저기온 예보)

  • Han, J.H.;Lee, B.L.;Cho, K.S.;Choi, J.J.;Choi, J.H.;Jang, H.I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.3
    • /
    • pp.209-215
    • /
    • 2007
  • To improve the accuracy of frost warning system for pear orchard in a complex terrain in Naju area, the daily minimum temperature forecasted by Korea Meteorological Administration (KMA) was interpolated using a regional climate model based on topoclimatic estimation and optimum scale interpolation from 2004 to 2005. Based on the validation experiments done for three pear orchards in the spring of 2004, the results showed a good agreement between the observed and predicted values, resulting in improved predictability compared to the forecast from Korea Meteorological Administration. The differences between the observed and the predicted temperatures were $-2.1{\sim}2.7^{\circ}C$ (on average $-0.4^{\circ}C$) in the valley, $-1.6{\sim}2.7^{\circ}C$ (on average $-0.4^{\circ}C$) in the riverside and $-1.1{\sim}3.5^{\circ}C$ (on average $0.6^{\circ}C$) in the hills. Notably, the errors have been reduced significantly for the valley and riverside areas that are more affected by the cold air drainage and more susceptible to frost damage than hills.

A Model to Forecast Rice Blast Disease Based on Weather Indexing (기상지수에 의한 벼도열병 예찰의 한 모델)

  • Kim Choong-Hoe;MacKenzie D. R.;Rush M. C.
    • Korean Journal Plant Pathology
    • /
    • v.3 no.3
    • /
    • pp.210-216
    • /
    • 1987
  • A computer program written to predict blast occurrence based on micro climatic events was developed and tested as an on-site microcomputer in field plots in 1984 and 1985. A microcomputer unit operating on alkaline batteries; continuously monitored air temperature, leaf wetness, and relative humidity; interpreted the microclimate information in relation to rice blast development and displayed daily values (0-8) of blast units of severity (BUS). Cumulative daily BUS values (CBUS) were highly correlated with blast development on the two susceptible cultivars, M-201 and Brazos grown in field plots. When CBUS values were used to predict the logit of disease proportions, the average coefficients of determination $(R^2)$ between these two factors were 71 to $91\%$, depending on cultivar and year. This was a significant improvement when compared to 61 to $79\%$ when days were used as a predictor of logit disease severity. The ability of CBUS to predict logit disease severity was slightly less with Brazos than M-201. This is significant inasmuch as Brazos showed field resistance at mid-sea­son. The results in this study indicate that the model has the potential for future use and that the model could be improved by incorporating other variables associated with host plants and pathogen races in addition to the key environmental variables.

  • PDF

Efficacy of Aerosolized Natural Antimicrobial and Organic Acids as a Sanitizer against Foodborne Pathogens on Stainless Steel (Stainless steel에 접종된 식중독 미생물에 대한 천연항균제 및 유기산 분무 살균효과)

  • Ha, Su-Jeong;Yang, Seung-Kuk;Park, Hyeon-Ju;Kim, Chung-Hwan;Oh, Se-Wook
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.4
    • /
    • pp.336-341
    • /
    • 2011
  • This study was carried out to investigate efficacy of aerosol sanitizer with natural antimicrobial and organic acids against Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes. The artificially inoculated pathogens on stainless steel coupon were treated with grapefruit seed extract (GFE), acetic acid, citric acid and lactic acid in model cabinet for 5 min. The number of three foodborne pathogens with individual treatment was reduced by 0.34-3.77 log units, treatment with GEF + organic acid was reduced by 1.72-3.89 log units and treatment with GEF + organic acid + alcohol was reduced by 1.46-5.05 log units. By treatment with GEF + lactic acid + alcohol in scale-up model system for 10 min. Populations of E. coli O157:H7, S. Typhimurium and L. monocytogenes were reduced by 3.42, 2.72 and 2.30 log units from the untreated control respectively. From the above result, aerosol sanitizer with natural antimicrobial agents and organic acid can be used as an environmental sanitation method with satisfying the consumer demand on safe food.

Analysis of Sedimentation Around Jetties in the West Coast: based on field measurement and hydrodynamic modeling (서해연안 돌제구조물 주위의 침퇴적 해석: 실측 및 수동역학 모델에 의한 초기추정)

  • Suh, Seung-Won;Yoo, Gyeong-Sun;Lee, Hwa-Young
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.4
    • /
    • pp.345-354
    • /
    • 2007
  • A sedimentation analysis has been attempted to figure out sedimentation environment due to construction of coastal jetties, such as fish harbor dike, flow guided dike and jetty in shallow Kusipo area, in which tidal range marks up to 6.6 meters in spring tide. As an initial approach of understanding field measurement were done on several stations along reference lines with total station and photo analysis taken by remote controlled small air craft far one and half years. Also numerical tests were done by 2-D ADCIRC model considering dry-wet treatment to evaluate flow and bottom shear stress variations. According to direct measurement, deposition seems to be dominant on Kusipo beach. Model results show bottom shear stress lessens to $0.10{\sim}0.15\;N/m^2$ on most shadow zone of jetties and the inner zone is suffering sedimentation as a result of dike construction. However this is the first approach with limited analysis, thus it should be dealt further considering physical characteristics of bottom sediments in a complete sediment model on upcoming study.

A LQR Controller Design for Performance Optimization of Medium Scale Commercial Aircraft Turbofan Engine (II) (중형항공기용 터보팬 엔진의 성능최적화를 위한 LQR 제어기 설계 (II))

  • 공창덕;기자영
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.3
    • /
    • pp.99-106
    • /
    • 1998
  • The performance of the turbofan engine, a medium scale civil aircraft which has been developing in Rep. of Korea, was analyzed and the control scheme for optimization the performance was studied. The dynamic and real-time linear simulation was performed in the previous study The result was that the fuel scedule of the step increase overshoot the limit temperature(3105 $^{\cire}R$) of the high pressure turbine and got small surge margine of the high pressure compressor. Therefore a control scheme such as the LQR(Linear Quadratic Regulator) was applied to optimizing the performance in this studies. The linear model was expected for designing controller and the real time linear model was developed to be closed to nonlinear simulation results. The system matrices were derived from sampling operating points in the scheduled range and then the least square method was applied to the interpolation between these sampling points, where each element of matrices was a function of the rotor speed. The control variables were the fuel flow and the low pressure compressor bleed air. The controlled linear model eliminated the inlet temperature overshoot of the high pressure turbine and obtained maximum surge margins within 0.55. The SFC was stabilized in the range of 0.355 to 0.43.

  • PDF

Integrated Algorithm for Identification of Long Range Artillery Type and Impact Point Prediction With IMM Filter (IMM 필터를 이용한 장사정포의 탄종 분리 및 탄착점 예측 통합 알고리즘)

  • Jung, Cheol-Goo;Lee, Chang-Hun;Tahk, Min-Jea;Yoo, Dong-Gil;Sohn, Sung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.531-540
    • /
    • 2022
  • In this paper, we present an algorithm that identifies artillery type and rapidly predicts the impact point based on the IMM filter. The ballistic trajectory equation is used as a system model, and three models with different ballistic coefficient values are used. Acceleration was divided into three components of gravity, air resistance, and lift. And lift acceleration was added as a new state variable. The kinematic condition that the velocity vector and lift acceleration are perpendicular was used as a pseudo-measurement value. The impact point was predicted based on the state variable estimated through the IMM filter and the ballistic coefficient of the model with the highest mode probability. Instead of the commonly used Runge-Kutta numerical integration for impact point prediction, a semi-analytic method was used to predict impact point with a small amount of calculation. Finally, a state variable initialization method using the least-square method was proposed. An integrated algorithm including artillery type identification, impact point prediction and initialization was presented, and the validity of the proposed method was verified through simulation.

The Study on Development on LUAV Software based on DO-178 (DO-178 기반 무인비행장치 소프트웨어 개발 방안에 대한 고찰)

  • Ji-hun Kwon;Dong-min Lee;Kyung-min Park;Ye-won Na;Ye-ju Kim;Gi-moung Lee;Jong-whoa Na
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.382-390
    • /
    • 2023
  • The Korea market for LUAV (Light Unmanned Aerial Vehicle) weighing less than 150 kg is growing rapidly. As a result, the market for manufacturing and operating LUAV is expanding, and domestic development of parts and finished products is actively taking place. However, the flight control system and onboard software, which are key components of domestic LUAV, are largely dependent on overseas products due to the excessive cost and period required for development. This paper presented a domestic software development and certification procedure using DO-178C, a guideline for aircraft software development, and the Model-based Development method, and conducted a survey of those involved in the development, manufacturing, and certification of LUAV and analyzed the results. In addition, a case study was conducted to apply the software development plan to the helicopter FCC (Flight Control Computer).

Conceptual Design and Hydrodynamic Properties of a Moving Bed Reactor for Intrinsic $CO_2$ Separation Hydrogen Production Process ($CO_2$ 원천분리 수소 제조 공정을 위한 이동층 반응기의 개념 설계 및 수력학적 특성)

  • Park, Dong-Kyoo;Cho, Won-Chul;Seo, Myung-Won;Go, Kang-Seok;Kim, Sang-Done;Kang, Kyoung-Soo;Park, Chu-Sik
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.69-77
    • /
    • 2011
  • The intrinsic $CO_2$ separation and hydrogen production system is a novel concept using oxidation and reduction reactions of oxygen carrier for both $CO_2$ capture and high purity hydrogen production. The process consists of a fuel reactor (FR), a steam reactor (SR) and an air reactor (AR). The natural gas ($CH_4$) is oxidized to $CO_2$ and steam by the oxygen carrier in FR, whereas the steam is reduced to hydrogen by oxidation of the reduced oxygen carrier in SR. The oxygen carrier is fully oxidized by air in AR. In the present study, the chemical looping moving bed reactor having 200 L/h hydrogen production capacity is designed and the hydrodynamic properties were determined. Compared with other reactors, two moving bed reactors (FR, SR) were used to obtain high conversion and selectivity of the oxygen carrier. The desirable solid circulation rates are calculated to be in the range of $20{\sim}100kg/m^2s$ from the conceptual design. The solid circulation rate can be controlled by aeration in a loop-seal. To maintain the gas velocity in the moving beds (FR, SR) at the minimum fluidization velocity is found to be suitable for the stable operation. The solid holdup in moving beds decrease with increasing gas velocity and solid circulation rate.

Mathematical Models of Photosynthetic Rate of Hydroponically Grown Cucumber Plants as Affected by Light Intensity, Air Temperature, Carbon Dioxide and Leaf Nitrogen Content (광도, 온도, $\textrm{CO}_2$ 농도 및 엽중 질소농도의 변화에 따른 양액재배 오이의 광합성속도에 관한 수리적 모형)

  • 임준택;백선영;정현희;현규환;권병선
    • Journal of Bio-Environment Control
    • /
    • v.9 no.3
    • /
    • pp.171-178
    • /
    • 2000
  • Gross photosynthetic rats of leaves of hydroponically grown cucumber plants(Cucumis sativus L. cv. Guwoosalichungjang) were measured under various conditions of photosynthetic photon flux(PPF), ambient $CO_2$ concentration, air temperature and leaf nitrogen contents. Light compensation point of leaf photosynthesis appeared to be in the range of 10~20$\mu$mol.m$^{-2}$ .s$^{-1}$ and light saturation point be above 1000$\mu$mol.m$^{-2}$ .s$^{-1}$ . Gross photosynthetic rates increased persistently and asymptotically as air temperature rose from 12$^{\circ}C$ to 32$^{\circ}C$. However, there were only small differences in gross photosynthetic rates in the range of 24-32$^{\circ}C$, so that the range seemed to be optimal for photosynthesis of cucumber plants at the condition of $CO_2$ concentration of 400$\mu$mol.mol$^{-1}$ and PPF of around 400$\mu$mol.m$^{-2}$ .s$^{-1}$ . $CO_2$ compensation point of leaf photosynthesis appeared to be in the range of 20-40$\mu$mol.mol$^{-1}$ and $CO_2$ saturation point be above 1200$\mu$mol.mol$^{-1}$ . Gross photosynthetic rates increased sigmoidally as leaf nitrogen content increased. These environmental factors interacted synergistically to enhance gross photosynthetic rate, so that the rate increased multiplicatively s level of one factor increased progressively with higher levels of he other factors. Mathematical models wer developed to estimate the gross photosynthetic rate in accordance with the variations of these environmental factors. These modes can be used not only to explain he variation of growth or yield of cucumber plants under different environmental conditions but also as building blocks of plant growth model or expert system of cucumber plants.

  • PDF