• Title/Summary/Keyword: Air supply fan

Search Result 71, Processing Time 0.02 seconds

Performance Analysis on Combined Horizontal Ground Source Heat Pump with Earth tube using EnergyPlus (EnergyPlus를 이용한 수평형의 지열 히트펌프와 어스튜브를 조합한 시스템의 성능 검토)

  • Cho, Sung-Woo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.2
    • /
    • pp.22-29
    • /
    • 2017
  • This study is performed to performance of the combined system the GSHP (Ground Source Heat Pump) system with the Earth tube system using EnergyPlus program. The Earth tube system using fan is characteristics as supply lower (higher) air temperature than outdoor air temperature in cooling and heating seasons, the GSHP system is characteristics as small indoor air temperature variation range. As the results of Earth tube + GSHP system simulation, GSHP power can be reduced than the GSHP single operation as 17.3% in cooling seasons and 32.5% in heating seasons, the GSHP design capacity can be replaced more small size.

A Study on the Performance of Paper Heat Exchanger for Exhaust Heat Recovery (배기열 회수용 종이 열교환기의 성능에 관한 연구)

  • Yoo, Seong-Yeon;Chung, Min-Ho;Choi, Jae-Ho;Kwon, Hwa-Kil;Lee, Chun-Woo;Lee, Ki-Seong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.245-250
    • /
    • 2003
  • In order to control indoor air quality and save energy, it is needed to install a suitable ventilation system equipped with heat exchanger for heat recovery. The purpose of this research is to find the performance of paper heat exchanger for exhaust heat recovery, which exchanges latent heat as well as sensible heat. Experimental apparatus comprises heat exchanger model, constant temperature and humidity chamber, fan and measurement systems for temperature, pressure and flow rate. Thermal performance and pressure loss of the paper heat exchanger are measured and compared at various air velocities and outdoor conditions. Experimental results show that paper heat exchanger can recover $50{\sim}70%$ of the enthalpy difference between supply and exhaust air.

  • PDF

DEVELOPMENT OF AUTOMATIC AIR BLAST WATERING MACHINE FOR MUSHROOM GROWING

  • Choe, K.J.;Park, H.J.;Park, K.K.;Lee, S.H.;Yu, B.K.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.613-622
    • /
    • 2000
  • Watering operation for oyster mushroom growing houses is regarded as drudgery and time consuming farm operation for growers. Most of mushroom growing beds in oyster mushroom growing houses are designed as two-row with four floor beds, therefore the watering and ventilation between the bed floors are much difficult for farmers because of its structural design. The study aimed to reduce the watering operation and improve the mushroom growing environment through the humidification and air supply on mushroom growing beds. Results showed that appropriate size of nozzle is between 0.8~0.5ml/s for the humidification and higher than the 2.0ml/s for the watering. The optimum water supply pressure was regarded as between 1.0~2.0MPa and the uniform distribution of droplet on the bed showed on air flow speed of 14m/s. The prototype was equipped with twin nozzle with. the humidification nozzle of 0.85ml/s and watering nozzle of 5.0ml/s, and the air blast fan with the air speed of 10m/sec in each air spout. In the field test in a practical scale mushroom growing house, it was well operated dependant on the set desire by a electric control unit. The machine can be practically used as air blast watering and air blast humidification for oyster mushroom growing farms without manual.

  • PDF

Measurement of Indoor Air Quality for Ventilation with the Existence of Occupants in Schools

  • Shin Hee-Soo;Lee Jai-Kwon;Ahn Young-Chull;Yeo Chang-Shin;Byun Sang-Hyun;Lee Jae-Keun;Kang Tae-Wook;Lee Kam-Gyu;Park Hyo-Soon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.1001-1005
    • /
    • 2005
  • This paper evaluates the performance of ventilation for the removal of indoor pollutants as a function of ventilation rate and the number of occupants in a test room and school classroom. An experimental apparatus consists of a test room, a tracer gas supply system, a gas detector, and a fan for ventilation air supply with a controller. The ventilation performance is evaluated in a step-down method based on ASTM Standard E741-83 using $CO_{2}$ gas as a tracer gas in the test room of 35 $m^{3}.$ For the ventilation air flow rate of 1.0 ACH, a recommended ventilation flow rate of Korea school standard for acceptable indoor air quality in the case of one person, CO_{2}$ gas concentration decreases up to $55{\%}$ within 50 minutes without occupancy and increases up to $75{\%}$ in the case of one occupant. Also indoor air quality at the school classroom is investigated experimentally.

A Study on the Recirculation Flow Characteristics with the Change of Shape in a Flue Gas Recirculation Device using Coanda Nozzle (코안다 노즐을 이용한 배기가스 재순환 장치의 형상에 따른 재순환 유동 특성에 관한 연구)

  • Ha, Ji Soo;Shim, Sung Hun;Kim, Dae Yeon
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.3
    • /
    • pp.1-6
    • /
    • 2019
  • The purpose of the present study is to elucidate flue gas recirculation device for reduction of nitrogen oxides using coanda nozzle without adopting additional power driving fan in a waste incinerator. The characteristics of the exhaust gas recirculation flow rate and the average temperature change at the outlet of the mixed gas were investigated according to the change of air supply nozzle gap and the position of air supply nozzle. When the gap of the air supply nozzle was changed to 3.22, 4.03, and 4.84 mm, the largest recirculation flow ratio, which is the ratio of exhaust gas recirculation flow rate and air supply flow rate, was 2.227 for the case with 3.22 mm and its mean temperature at outlet was $594.8^{\circ}C$. When the position of the air supply nozzle changes to the front position, neck position, and expansion position of the coanda nozzle neck, the recirculation flow ratios at the forward position and the neck position were nearly almost the same value, 1.843, and 1.696 at the expansion position, their mean temperatures were $559.8^{\circ}C$ and $544.3^{\circ}C$, respectively.

On the Pressurization for Smoke Control in Building Fires (건물화재에서의 가압방연 설계에 관한 연구)

  • Kim, Myeong-Bae
    • 연구논문집
    • /
    • s.29
    • /
    • pp.39-48
    • /
    • 1999
  • This paper deals with the lobby pressurization for smoke control in building fires. A computer program and related modeling technique are presented. The pressure difference between a lobby and a fire area is not able to be same among building floors because an injection fan can not be installed in each floor. The most remote area from the injection fan has therefore the smallest pressure difference if flow areas are not different through all floors. An adjacent floor from the injection fan has possibly too large pressure difference because the most remote lobby must also meet the required pressure difference over the fire area. Moreover this problem will lead to a larger capacity of the fan. It is showed that the fan capacity can be decreased by adjusting the flow area of air supply duct in each floor.

  • PDF

DESIGN, CONSTRUCTION AND ACOUSTIC PERFORMANCE OF A SOUND-POOOF ENCLOSURE FOR DIESEL GENERATOR-SET

  • Bansal, A.S.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.662-667
    • /
    • 1994
  • This paper presents the design and construction details of a soundproof enclosure for housing 20 KVA diesel generator-set. As the generator had to be installed close to the hospital building, it was desirable to reduce the transmission of noise by housing the generator in such an enclosure. The diesel engine being an air cooled one, it was essential to supply fresh air into the enclosure for its cooling. Forced inflow of air is provided through an inlet duct located in such a way that the incoming fresh air is thrown close to the inlet of cooling fan of the engine. The high velocity air stream, which heats up while passing over the engine head, escapes to the atmosphere through a rectangular outlet duct with enlarges inlet that receives hot air from the engine. The air ducts were designed specially and have been provided with acoustic lining for sound absorption. The masonary enclosure has been provided with double glazed fixed windows and double doors. The exhaust pipe of the engine fitted with a muffler has been taken out through the enclosure wall facing away from the hospital. Acoustic performance studies conducted in terms of attenuation provided by the enclosure at different frequencies have also been presented and discussed. The noise control measures adopted for building the sound-proof enclosure have been found to be quite effective as the noise levels inside the hospital building are now within the acceptable limits.

  • PDF

A Primary Study on the Enhancement of Efficiency in the Computer Cooling System using Entrance Tube of Outer Air (외부공기 유입관을 이용한 컴퓨터 냉각시스템의 효율향상에 관한 연구)

  • Kim, S.H.;Kim, M.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.4
    • /
    • pp.56-61
    • /
    • 2009
  • In recent years, since the continuing increase in the capacity in personal computer such as the optimal performance, high quality and high resolution image, the computer system's components produce large amounts of heat during operation. This study analyzes and investigates the ability and efficiency of a cooling system inside a computer by means of central processing unit (CPU) and power supply cooling fan. This research was conducted to enhancement of efficiency of the cooling system inside the computer by making a structure which produces different air pressures in an air inflow tube. Consequently, when temperatures of the CPU and room inside computer were compared with a general personal computer, temperatures of the tested CPU, the room and the heat sink were as low as $5^{\circ}C$, $2.5^{\circ}C$ and $7^{\circ}C$ respectively. In addition to, revolution per minute (RPM) was shown as low as 250 after 1 hour operation. This research explored the possibility of enhancing the effective cooling of high-performance computer systems.

  • PDF

Characteristics of Sawdust and Cocopeat Beddings, and Their Usefulness According to the Fan and Pen Location for Rearing Hanwoo Cattle

  • Ahn, Gyu Chul;Jang, Sun Sik;Lee, Kang Yeon;Kwak, Wan Sup;Oh, Young Kyun;Park, Keun Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.444-454
    • /
    • 2016
  • This study was designed to examine the characteristics of sawdust and cocopeat bedding materials, including physicochemical properties (Exp. I) and on-farm trial (Exp. II). In Exp. I, the proportion of particle size was in the order of sawdust>cocopeat India>cocopeat Vietnam (p<0.05), and cocopeat contained higher proportion of small particles ($250{\mu}m$+below $250{\mu}m$) than sawdust, causing a dust production problem. Bulk density was cocopeat India>cocopeat Vietnam>sawdust (p<0.05), thus cocopeat treatments showed 4.4 times higher bedding cost than sawdust. The water absorption rates were 702.0% in cocopeat India, 678.3% in cocopeat Vietnam, and 444.0% in sawdust, showing cocopeat had approximately 1.5 times higher water absorption rate than sawdust. Moisture evaporation rates after 12 h of air blowing (2.00 m/s) were higher (p<0.05) in cocopeat Vietnam (80.4%) than sawdust (71.2%) and cocopeat India (72.8%). In vitro ammonia emissions were higher (p<0.05) in sawdust ($2.71mg/m^2/h$) than cocopeat India ($1.59mg/m^2/h$) and Vietnam ($1.22mg/m^2/h$), and total ammonia emissions were higher (p<0.05) in sawdust ($37.02mg/m^2$) than cocopeat India ($22.51mg/m^2$) and Vietnam ($13.60mg/m^2$). In Exp. II, an on-farm trial was conducted with 48 Hanwoo cattle in 16 pens using the same bedding materials as in Exp. I, with fan (blowing 2.00 m/s) and no fan treatments, and feed bunk side (FB) and water supply side (WS) within a pen (4.5 m, $width{\times}9.0m$, length). Beddings were replaced with fresh bedding materials when moisture concentrations were over 65%. No interactions among treatments were detected for moisture concentration and increment rates, and ammonia concentrations, but a significant effect was observed (p<0.01) for each of the treatments. Both concentrations and increment rate of moisture were higher (p<0.01) in the beddings without fan than with fan. Moisture concentrations and increment rate within a pen were also higher (p<0.01) in FB than WS. Thus, the whole no-fan-FB and sawdust-fan-FB were replaced with fresh bedding material between 4 to 5 experimental weeks. The ammonia concentrations and pH of beddings were not significantly different among treatments. Therefore, using cocopeat bedding with a blowing fan can extend twice the bedding utilization period, and WS within a pen showed twice the bedding-life compared to FB. Despite the outstanding characteristics of cocopeat compared with sawdust, using cocopeat as an alternative for sawdust bedding is not recommended for cattle management, considering it has 4.4 times higher bedding cost and a dust production problem.

A Study on the Airtightness Performance of New Han-ok Bedrooms (신한옥 침실 공간의 기밀성능 평가 연구)

  • Lee, Ju-Yeob;Jang, Hyeon-Chung;Lee, Tai-Gang;Song, Min-Jeong;Kim, Sun-Woo
    • KIEAE Journal
    • /
    • v.13 no.3
    • /
    • pp.79-89
    • /
    • 2013
  • The purpose of this study is to evaluate the airtightness performance of New Han-ok and to supply fundamental data for standards establishment. Air leakage testings were accomplished by means of blower door test in 26 bedrooms of 16 Han-oks located in Jeonnam happy villages. Followings are results. 1) Air change per hour at 50 Pa(ACH50) is located on 8.42~78.38. 2) No correlation between ACH50 and volumes, floor area, above grade surface area. 3) The more wood structural elements are exposed, attached spaces, wooden sliding and casement windows, the less airtightness performance. 4) An Airtightness with ACH50/20(NL, Normalized leakage) is located on 0.42~3.92 and building leakage class following F(4%), G(11%, sufficiently leaky, No need mechanical ventilation), H(4%, Need of cost-effective tightening), I(31%), J(50%) by a single-story house the normalized leakage of ASHRAE.