• Title/Summary/Keyword: Air source

Search Result 2,258, Processing Time 0.027 seconds

Performance Characteristics of Water-to-Air Heat Pump under Partial Load Heating Operation (물-공기 히트펌프 시스템의 부분부하 난방운전 특성)

  • Cho, Yong;Lee, Nam Young;Kim, Yong Yeol;Kim, Dea Geun;Jung, Eung Tai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.170.1-170.1
    • /
    • 2010
  • Performance of water-to-air heat pump using raw water has been analyzed under part load heating operation in March, 2010. The water source heat pump of 30 RT was installed for 24 hours cooling and heating ventilation, and the gravity inflow water from Daechung dam is used as the heat source. The daily averaged water and air temperatures are $5.7^{\circ}C$ and $9.9^{\circ}C$ respectively, and the heat pump is operated under part load condition for 7.5 hours in 24 hours. The daily averaged heat pump COP calculated with heat transferred from the brine water is 2.49 and the monthly averaged COP is 2.25 in March. Based on the database of the California Energy Commission, the monthly averaged COPs of air source heat pumps installed in U.S.A. are 1.97 in March and 2.03 in April. Therefore it is confirmed again that the performance of the heat pump using raw water is better than that of air source heat pumps.

  • PDF

Airborne infection risk of respiratory infectious diseases and effectiveness of using filter-embeded mechanical ventilator and infectious source reduction device such as air cleaner (실내 공간에서의 호흡기 감염병 공기전파감염 위험도와 공기정화장치(필터 임배디드 기계식 환기설비 및 공기청정기 등 실내 감염원 저감 장치) 사용에 따른 효율)

  • Park, Sungjae;Park, Geunyoung;Park, Dae Hoon;Koo, Hyunbon;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.16 no.4
    • /
    • pp.73-94
    • /
    • 2020
  • Particulate infectious sources, including infectious viruses, can float in the air, causing airborne infections. To prevent indoor airborne infection, dilution control by ventilation and indoor air cleaners are frequently used. In this study, the risk of airborne infection by the operation of these two techniques was evaluated. In case of dilution control by ventilation, a high efficiency air filter was embedded at the inlet of supply air. In this study, infectious source reduction devices such as indoor air cleaner include all kinds of mechanical-filters, UV-photo catalysts and air ionizers through which air flow is forced by fans. Two mathematical models for influenza virus were applied in an infant care room where infants and young children are active, and the risk reduction efficiency was compared. As a result, in the case of individually operating the ventilator or the infectious source reduction device, the airborne infection risk reduction efficiencies were 55.2~61.2% and 53.8~59.9%, respectively. When both facilities were operated, it was found that the risk of airborne infection was reduced about 72.2~76.8%. Therefore, simultaneous operation of ventilation equipment and infectious source reduction device is the most effective method for safe environment that minimizes the risk of airborne infection of respiratory infectious diseases. In the case of a space where sufficient ventilation operation is difficult, it was found that the operation of an infectious source reduction device is important to prevent the spread of infectious diseases. This study is meaningful in that it provides an academic basis for strategies for preventing airborne infection of respiratory infectious diseases.

A study on cooling characteristics of clathrate compound for cold storage applications (저온축열용 포접화합물에 냉각특성에 관한 실험적 연구)

  • 한영옥;김진흥
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.205-214
    • /
    • 1999
  • The objective of this paper is to investigate the thermal properties of TMA clathrate compound applicable to cold storage system for building air-conditioning. Especially, the test tube experiments are performed by comparing and analyzing the temperature of phase change, specific heat and subcooling characteristic according to the variation of density, temperature of heat source and charging quantity in TMA clathrate compound. The results are summarized as follows:1) $-15^{\circ}C$ is not proper as the temperature of heat source because the temperature of subcooling is above $8.3^{\circ}C$ 2) temperature of phase change is dropped as the temperature of heat source is lower, 3) the effect of subcooling suppression with about 8$^{\circ}C$ is confirmed when the temperature of heat source is $-10^{\circ}C$ in case of 26, 27, and 30wt%, while the temperature of subcooling is about $0^{\circ}C$ when the temperature of heat source is $-15^{\circ}C$ in case of 25, 26 and 30wt%. Thus, the effect of subcooling suppression is greater as the temperature of heat source is lower. Additionally, the concentrative study is needed on mass concentration causing the phase change without subcooling phenomenon when the temperature of heat source is $-15^{\circ}C$. Thus, it is concluded that TMA clathrate compound has enough thermal properties as the cold storage medium for building air-conditioning.

  • PDF

Estimation of Source Strength and Deposition Constant of Nitrogen Dioxide Using Compartment Model (구획모델을 이용한 주택에서 이산화질소의 발생강도 및 감소상수 동시 추정)

  • Yang Won-Ho;Son Bu-Soon;Sohn Jong-Ryeul
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.4 s.85
    • /
    • pp.260-265
    • /
    • 2005
  • Indoor air quality might be affected by source strength of indoor pollutants, ventilation rate, decay rate, outdoor level, and so on. Although technologies measuring these factors exist directly, direct measurements of all factors are not always practical in most field studies. The purpose of this study was to develop an alternative method to estimate the source strength and deposition constant by application of multiple measurements. For the total duration of 60 days, indoor and outdoor $NO_2$ concentrations every 3 days were measured in 30 houses in Seoul, Asan and Daegu. Using a compartment model by mass balance and linear regression analysis, penetration factor (ventilation divided by sum of air exchange rate and deposition constant) and source strength factor (emission rate divided by sum of air exchange rate and deposition constant) were calculated. Subsequently, the source strength and deposition constant were estimated. Natural ventilation was $1.80{\pm}0.42\;ACH,\;1.11{\pm}0.50\;ACH,\;0.92{\pm}0.26\;ACH$ in Seoul, Asan and Daegu, respectively. Calculated deposition constant(K) and source strength of $NO_2,$ in this study were $0.98{\pm}0.28\;hr^{1}\;and\;16.28{\pm}7.47\;ppb/h,$ respectively.

The Study on the Performance of the Fuel Cell Driven Compound Source Hybrid Heat Pump Heating and Cooling System to Large Community Building (대형 Community 건물의 연료전지 구동 복합열원 하이브리드 히트펌프 냉.난방 시스템 성능 해석)

  • Byun, Jae-Ki;Jeong, Dong-Hwa;Choi, Young-Don
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.82-87
    • /
    • 2007
  • In the present study, the simulation on the annual performance evaluation of a renewable energy systems with fuel cell driven compound source hybrid heat pump systems is applied to the heating and cooling of large community building. The large community building has the economical advantage to apply heat pump cooling and heating systems the long period operation. If air and ground source hybrid heat pump systems are combined, COP of the system can be increased largely. Fuel cell driven compound source hybrid heat pump system can reduced the fuel cost as well as thermal storage tank sharply.

  • PDF

Study on the Heating Performance Characteristics of a Heat Pump System Utilizing Air and Waste Heat Source for Electric Vehicles (이중열원을 이용한 전기자동차용 히트펌프 시스템의 난방 성능 특성에 관한 연구)

  • Woo, Hyoung Suk;Ahn, Jae Hwan;Oh, Myoung Su;Kang, Hoon;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.4
    • /
    • pp.180-186
    • /
    • 2013
  • An electric vehicle is an environment-friendly automobile which does not emit any tailpipe pollutant. In a conventional vehicle with an internal combustion engine, the internal cabin of the vehicle is usually heated using waste heat from the engine. However, for an electric vehicle, an alternative solution for heating is required because it does not have a combustion engine. Recently, a heat pump system which is widely used for residential heating due to its higher efficiency has been studied for its use as a heating system in electric vehicles. In this study, a heat pump system utilizing air source and waste heat source from electric devices was investigated experimentally. The performance of the heat pump system was measured by varying the mass flow rate ratio. The experimental results show that the heating capacity and COP in the dual heat source heat pump were increased by 20.9% and 8.6%, respectively, from those of the air-source heat pump.

An overview of Geothermal heat pumps as energy efficient and environmental friendly systems

  • Ahmad, Bilal;Kim, Dong-Hwan;Bahk, Sae-Mahn;Park, Myung-Kyun
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.294-298
    • /
    • 2008
  • The major threats that human being is facing nowadays are the Climate change, depletion of the fossil fuels at a rapid rate and energy costs. A significant portion of world energy consumption is consumed by domestic heating and cooling. And heat pumps, due to their higher utilization efficiencies as compared to conventional heating and cooling systems, offer an attractive solution to this problem. Among the types of heat pumps, the Geothermal heat pump or Ground-source heat pump is a highly efficient, renewable energy technology for space heating and cooling. The Ground-source heat pump uses the Earth as a heat sink in the summer and a heat source in the winter. And the Earth, having a relatively constant temperature, warmer than the air in winter and cooler than the air in summer, offers an excellent heat source in winter and heat sink in summer.. This paper will discuss an overview of the types of heat pumps, its operation, benefits of using geothermal heat pumps, soil characteristics, and overview of some experimental works. Finally it will briefly discuss the opportunity of using these energy efficient systems (EES) in the HVAC market of South Korea.

  • PDF

Numerical Study on the Cooling Characteristics of Pedestal Heat Source with an Confined Air Jet (제한벽이 있는 공기제트에 의한 돌출 발열체의 냉각 특성에 대한 수치 해석 연구)

  • Choi, In-Su
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.1
    • /
    • pp.11-18
    • /
    • 2009
  • The air flow and heat transfer characteristics of an air jet impinging on a pedestal heat source has been investigated numerically to examine the effects of geometric parameters such as nozzle-to-pedestal spacing, nozzle diameter and pedestal size. Also, the parameters of Reynolds number, air jet power, supplied heat and thermal conductivity of pedestal have been studied to reveal how these affect the average Nusselt number. Hence, a two-dimensional turbulent model has been developed and adopted to simulate the fluid flow and heat transfer phenomena numerically. The results obtained from the model show that the nozzle-to-pedestal spacing, relative size of nozzle to pedestal and Reynolds number of air jet have a significant influence on the cooling characteristics of heated pedestal. Furthermore, some useful guidelines could be given to the application of cooling the heated pedestal.

  • PDF

Effects of Air Pollution on Physiological characteristics of Styrax japonica in Yeolchon Industrial Complex (여천공단주변 대기오염이 때죽나무의 생장 특성에 미치는 영향)

  • 김동근
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.121-128
    • /
    • 2000
  • To identify the effects of air pollution on several physiological characteristics of Styrax japonica in Yeochon industrial comples soil properties photosynthetic capacity and chorophyll contents were investigated. All of these measurements were taken on Styrax japonica stand at 1. 3 and 7km from an industrial complex which is an air pollution source. In addition a Styrax japonica stand in Sang-ju city was selected as a control Each physiological measurement was in leaves of east-, west- south- and north-facing branches. The results obtained were as follows: 1) Al contents of soil in Yeochon industrial complex were higher than those of Sang-ju city a non-polluted area. higheral contents contributed to decrease in soil pH. 2) Chlorophyll contents of leaves at 1km from the industrial complex closest from the air pollution source were lower than those of 3 and 7km/ 3) Photosynthetic capacity of Styrax japonica at 1km from the air pollution source was lower than those at 3 and 7km.

  • PDF

Identification of Noise Sources in Scroll Compressor for Air-Conditioner

  • Lee, Jin-Kab
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.597-604
    • /
    • 2000
  • Low noise of air-conditioners is one of the most important issues because of the users' strong demand. The main source of noise in an air-conditioner is the compressor. Therefore, noise reduction in a compressor is quite significant as an element technology in the air-conditioner field. Recently, scroll compressors are widely used, because they feature low noise, due to less pulsation of gas pressure, than that of rotary compressors. For reduction of noise, the source of noise must be identified. This paper presents a detailed analysis to identify the noise source and shows the dominant factors of noise of the scroll compressor, which will make it possible to design a scroll compressor with low noise.

  • PDF