• 제목/요약/키워드: Air source

검색결과 2,258건 처리시간 0.028초

공조용 밀폐형 압축기의 토출부 압력맥동 및 케비티 공명에 대한 연구 (Study on Pressure Pulsation and Cavity Resonance in Discharge Plenum of Hermetic Compressor)

  • 이진갑
    • 설비공학논문집
    • /
    • 제12권3호
    • /
    • pp.302-308
    • /
    • 2000
  • The major source of noise in air-conditioner is a compressor. Therefore, noise reduction in a compressor is quite significant as an element technology in air-conditioner field. Recently, a scroll compressor is widely used, because a scroll compressor features lower noise, due to less pulsation of gas pressure, than that of the rotary compressor. During a past noise reduction effort on a scroll compressor, noise radiation from the discharge portion of the hermetic shell was identified as the major contributor to overall noise. For a reduction of noise, the source of noise at the discharge portion must be identified. This paper presents detailed analyzes for the discharge pressure pulsation and cavity resonance at discharge space, which will make possible a low noise design of a scroll compressor.

  • PDF

액분사 사이클을 이용한 공기 열원 열펌프의 사이클 시뮬레이션 (Cycle Simulation of an Air Source Heat Pump Using Liquid Injection)

  • 김욱중;홍용주;남임우;강원일;공용상
    • 설비공학논문집
    • /
    • 제12권3호
    • /
    • pp.244-250
    • /
    • 2000
  • An air source heat pump using liquid injection technique, which can be applied for very low temperature climate, has been simulated to examine the design options. Comparison between the simulation and experiment has been carried out to validate the simulation method. Effects of various design parameters such as liquid injection rate and injection pressure are Investigated to optimize the performance of the heat pump. Finally, optimal liquid infection rate and injection pressure to maintain sufficient heating capacity and moderate discharge refrigerant temperature are suggested when the heat pump was operated at very low outdoor temperature.

  • PDF

공기 열원을 이용한 축열식 냉난방 시스템 연구 (A Study on the Energy Storage System Using Air Source Heat Pump for Heating and Cooling)

  • 김욱중;이공훈;서정균
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.1125-1130
    • /
    • 2006
  • An air source heat pump system producing the ice and water storage energy for cooling and heating of building has been proposed. Cycle design and simulation considering energy balance between heating and cooling capacity has been carried out. The roles of the capacity controlled compressor, refrigerant heating device and air preheating are investigated in detail. System control logic for meeting the predetermined heating capacity when the system is operated at cold climate condition is suggested. Some anticipated problems of the proposed system are also described.

  • PDF

도시철도 환경의 미세먼지 오염 현황 (Status of particulate matter pollution in urban railway environments)

  • 김종범;이승복;배귀남
    • 실내환경 및 냄새 학회지
    • /
    • 제17권4호
    • /
    • pp.303-314
    • /
    • 2018
  • The urban railway system is a convenient public transportation system, as it carries many people without increasing traffic congestion. However, air quality in urban railway environments is worse than ambient air quality due to the internal location of the source of air pollutants and the isolated space. In this paper, characteristics of particulate matter (PM) pollution in urban railway environments are described from the perspective of diurnal variation, chemical composition and source apportionment of PM. PM concentrations in concourse, platform, passenger cabin, and tunnel are summarized through an analysis of 34 journal articles published in Korea and overseas. This information will be helpful in developing effective policies to reduce PM pollution in urban railway environments.

공기 기인 소음 분석과 음향 인텐시티법을 이용한 타이어에 의한 실내 소음 예측 (Prediction of Interior Noise Caused by Tire Based on Sound Intensity and Acoustic Source Quantification)

  • 신광수;이상권;황성욱
    • 한국소음진동공학회논문집
    • /
    • 제23권4호
    • /
    • pp.315-323
    • /
    • 2013
  • Tire noise is divided into a road noise(structure-borne noise) and a pattern noise(air-borne noise). Whilst the road noise is caused by the structural vibration of the components on the transfer path from tire to car body, the pattern noise is generated by the air-pumping between tire and road. In this paper, a practical method to estimate the pattern noise inside a passenger car is proposed. The method is developed based on the sound intensity and airborne source quantification. Sound intensity is used for identifying the noise sources of tire. Airborne source quantification is used for estimating the sound pressure level generated by each noise source of a tire. In order to apply the airborne source quantification to the estimation of the sound pressure, the volume velocity of each source should be obtained. It is obtained by using metrics inverse method. The proposed method is successfully applied to the evaluation of the interior noises generated by four types of tires with different pattern each other.

중형항공기 동체 소음해석 기법 연구 (The Study for Vibro-acoustic Noise Analysis in the Fuselage of Regional Turboprop Airplane)

  • 박일경;김성준;정진덕
    • 한국항공운항학회지
    • /
    • 제20권3호
    • /
    • pp.44-50
    • /
    • 2012
  • The noise reduction is important one of considerations in the process of a civil aircraft development program. External noise sources are classified into an air-born source and a structure-born source. Among these noise sources, the most affected noise source into a cabin is the air-born noise source from an engine or propeller. The external noise is transmitted into the cabin through the fuselage structure of airplane which are composed of an fuselage structure, an interior trim panel and an acoustic insulation layer between an fuselage structure and an interior trim panel. Therefore, appropriate fuselage structure and acoustic insulation layer is very important to reduce the internal noise level. In this paper, the vibro-acoustic coupled analysis of the cabin noise of the 80~90 seats regional turboprop aircraft is carried out to validate the acoustic analysis method using Direct BEM and FEM. The sound pressure level onto the fuselage skin is acquired by fan-source noise analysis using BEM, and which sound pressure is used as acoustic noise source in vibro-acoustic noise analysis for cabin noise analysis using FEM.

Study on Noise Reduction of AV Projector

  • Kim, Sang-Hoon;Bok, Ki-So;Lee, Seung-Gyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1155-1158
    • /
    • 2007
  • To reduce acoustic noise level of an AV projector, primary noise sources of AV projector were analyzed. Based on the analyzed result, methods to control each source are presented and tried. Structure-borne noise can be controlled by anti vibration design of mounting system, and air-borne noise by reducing flow resisitvity.

  • PDF

태양광발전을 이용한 에어콘의 보조운전 제어 시스템 (Auxiliary Power Supply using Photovoltaic Power Generation for Air-Conditioner)

  • 황인호;유권종;송진수;이후기;정찬규
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국태양에너지학회, 한국에너지공학회 1993년도 춘계 공동학술발표회 초록집
    • /
    • pp.47-52
    • /
    • 1993
  • Recently, as exactly clean source, the research of photovoltaic power generation is undertaken actively and widely. In this paper, an auxiliary power supply system which is composed of photovoltaic generation and DC-DC boost chopper is described. This system in mainly for Air-conditioner appliances is which AC source is formed through rectifying circuit and without electrical storage battery. There exist two operating modes depending on the power quantity of the solar cells and the load. The control algorithm is discussed.

  • PDF

제주지역 지하공기를 이용한 농업시설용 히트펌프시스템의 난방 성능 분석 - 제주지역을 중심으로 - (The Analysis of heating performance of heat pump system for agricultural facility using underground air in Jeju area - Focused on the Jeju Area -)

  • 강연구;임태섭
    • KIEAE Journal
    • /
    • 제16권6호
    • /
    • pp.109-114
    • /
    • 2016
  • Purpose: The underground air is the warm air discharged from the porous volcano bedrock 30-50m underground in Jeju, including excessive humidity. The temperature of the underground air is $15-20^{\circ}C$ throughout the year. In Jeju, the underground air was used for heating greenhouses by supplying into greenhouses directly. This heating method by supplying the underground air into greenhouses directly had several problems. The study was conducted to develop the heat pump system using underground air as heat source for resolving excessive humidity problem of the underground air, adopting the underground air as a farm supporting project by Ministry of Agriculture, Food and Rural Affairs(MAFRA) and saving heating cost for agricultural facilities. Method: 35kW scale(10 RT) heat pump system using underground air installed in a greenhouse of area $330m^2$ in Jeju-Special Self-Governing Province Agricultural Research & Extension Services, Seogwipo-si, Jeju. The inlet and outlet water temperature of the condenser, the evaporator and the thermal storage tank and the underground air temperature and the air temperature in the greenhouse were measured by T type thermocouples. The data were collected and saved in a data logger(MV200, Yokogawa, Japan). Flow rates of water flowing in the condenser, the evaporator and the thermal storage tank were measured by an ultrasonic flow meter(PT868, Panametrics, Norway). The total electric power that consumed by the system was measured by a wattmeter(CW240, Yokogawa, Japan). Heating COP, rejection heat of condenser, extraction heat of evaporator and heating cost were analyzed. Result: The underground air in Jeju was adopted as a farm supporting project by Ministry of Agriculture, Food and Rural Affairs(MAFRA) in 2010. From 2011, the heat pump systems using underground air as a heat source were installed in 12 farms(16.3ha) in Jeju.

저에너지주택의 지열히트펌프시스템 냉·난방 성능분석 (Heating and Cooling Performance Analysis of Ground Source Heat Pump System in Low Energy House)

  • 백남춘;김성범;신우철
    • 설비공학논문집
    • /
    • 제28권10호
    • /
    • pp.387-393
    • /
    • 2016
  • A ground source heat pump system maintains a constant efficiency due to its stable heat source and radiant heat temperature which provide a more effective thermal performance than that of the air source heat pump system. As an eco-friendly renewable energy source, it can reduce electric power and carbon dioxide. In this study, we analyzed one year of data from a web based remote monitoring system to estimate the thermal performance of GSHP with the capacity of 3RT, which is installed in a low energy house located in Daejeon, Korea. This GSHP system is a hybrid system connected to a solar hot water system. Cold and hot water stored in a buffer tank is supplied to six ceiling cassette type fan coil units and a floor panel heating system installed in each room. The results are as follows. First, the GSHP system was operated for ten minutes intermittently in summer in order to decrease the heat load caused by super-insulation. Second, the energy consumption in winter where the system was operated throughout the entire day was 7.5 times higher than that in summer. Moreover, the annual COP of the heating and cooling system was 4.1 in summer and 4.2 in winter, showing little difference. Third, the outlet temperature of the ground heat exchanger in winter decreased from $13^{\circ}C$ in November to $9^{\circ}C$ in February, while that in summer increased from $14^{\circ}C$ to $17^{\circ}C$ showing that the temperature change in winter is greater than that in summer.