• Title/Summary/Keyword: Air side heat transfer coefficient

Search Result 69, Processing Time 0.018 seconds

Evaluation of Air-side Heat Transfer and Friction Characteristics on Design Conditions of Evaporator (증발기의 설계조건에서 공기측 열전달계수 및 압력강하 산출)

  • 김창덕;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.12
    • /
    • pp.1007-1017
    • /
    • 2003
  • An experimental study on the air-side pressure drop and heat transfer coefficient of slit fin-tube heat exchanger has been carried out. The data reduction methodology for air-side heat transfer coefficients in the literature is not based on a consistent approach. This paper focuses on new method of data reduction to obtain the air-side performance of fin-tube heat exchanger using R22 and recommends standard procedures for dry and wet surface heat transfer estimation in fin-tube heat exchanger having refrigerant on the tube-side. Results are presented as plots of friction f-factor and Colburn j -factor against Reynolds number based on the fin collar outside diameter and compared with previous studies. The data covers a range of refrigerant mass fluxes of 150∼250 kg/$m^2$s with air flows at velocity ranges from 0.3 m/s to 0.8 m/s.

Evaluation of Air-side Heat Transfer and Friction Characteristics on Design Conditions of Condenser (응축기의 설계조건에서 공기측 열전달계수 및 압력강하 산출)

  • 김창덕;전창덕;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.3
    • /
    • pp.220-229
    • /
    • 2003
  • An experimental study on the air-side pressure drop and heat transfer coefficient of slit fin-tube heat exchanger has been carried out. The data reduction methodology for air-side heat transfer coefficients in the literature is not based on a consistent approach. This paper focuses on new method of data reduction to obtain the air-side performance of fin-tube heat exchanger using R22 and recommends standard procedures for dry surface heat transfer estimation in fin-tube heat exchanger having refrigerant on the tube-side. Results are presented as plots of friction f-factor and Colburn j -factor against Reynolds number based on the fin collar outside diameter and compared with previous studies. The data covers a range of refrigerant mass fluxes of 150~250 kg/$m^2$s with air flows at velocity ranges from 0.6 m/s to 1.6 m/s.

Effect of Expansion Ratio on Contact Heat Transfer Coefficient in Fin-Tube Heat Exchanger (핀관 열교환기에서 확관율이 접촉열전달계수에 미치는 영향)

  • Lee, Sang-Mu;Park, Byung-Duck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.1
    • /
    • pp.45-50
    • /
    • 2012
  • The plate fin and tube type of heat exchanger is widely used in air conditioner, and the heat exchanger is assembled by the mechanical expansion of copper tubes and fastening the aluminum fin. The objective of the present study is to investigate how the mechanical expansion of copper tube affects on the heat transfer performance of a plate fin and tube type heat exchanger. This study has been performed by experimental and numerical methods. The numerical and experimental results show that the tube expansion ratio has a influence on the heat transfer performance. Within the tested expansion ratio, the contact pressure shows the peak value and it decreases as the expansion ratio increases. Air-side heat transfer coefficient increases until the expansion ratio reaches 1.23, and then decreases with the similar pattern to the contact pressure. Also, contact heat transfer coefficient shows the maximum when the contact pressure is highest as well as the air-side heat transfer coefficient.

Evaluation of Air-side Pressure Drop and Heat Transfer Performance of Brazing Fin-tube Heat Exchanger (브레이징 휜-관 열교환기의 공기측 열유동 성능평가)

  • 강희찬;강민철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.957-963
    • /
    • 2003
  • The present work was conducted to investigate the air-side thermal-hydraulic performance of the brazing fin-tube heat exchanger. Pressure drop and heat transfer coefficient for a plain and a louvered fin configuration were compared numerically and experimentally. It was found that the heat transfer characteristics for the plain fin were similar to the developing flow in the rectangular channel. The louver fin showed about twice better heat transfer coefficient than the plain fin. Previous empirical correlations presented by Davenport, Sunden and Svantesson, Sahnoun and Webb, Chang and Wang, Achaichia and Cowell, and Kang were compared with the present experimental data.

The Experimental Study on the Heat Transfer Characteristics of Ice Slurry Generator Using Air Cylinder (공압구동형 제빙기의 열전달 특성에 관한 실험적 고찰)

  • Kim, Min-Jun;Kim, Joung-Ha;Yun, Jae-Ho;Park, Il-Hwan;Lee, Kyu-Chil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.11
    • /
    • pp.743-750
    • /
    • 2007
  • In this study, ice slurry generator using air cylinder was designed and manufactured to investigate the heat transfer characteristic of the ice slurry generator. The ice slurry generator has the same shape as the shell-and-tube type heat exchanger. Refrigerant is flowing in the shell side and ethylene glycol solution in the tube side. The experiment was conducted on performance of ice slurry generator using air cylinder with standard condition and the results are plotted on the time scale. The experimental tests on the various concentration of ethylene glycol solution, the various solution velocity in the tube side and the various tube size have been carried. For the above experimental conditions, ice making characteristics of the ice slurry generator are evaluated in terms of the overall heat transfer coefficient. And the experimental results show that the overall heat transfer coefficient of the system is increased as the tube size and the concentration of ethylene glycol decreases.

Measurement of air side heat transfer coefficient of wire-on-tube type heat exchanger (Wire-on-tube형 열교환기의 공기측 열전달계수 측정)

  • 이태희;이장석;박종진;윤점열
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.2
    • /
    • pp.161-169
    • /
    • 2000
  • The experiment was conducted to obtain correlation of the air side heat transfer coefficient of wire-on-tube type heat exchanger using the single layer heat exchanger. The correction factors to Zhukauskas correlation was driven from the experimental results. The numerical analysis and experiment with several wire-on-tube type condensers to validate the correction factors are also peformed. The maximum discrepancy between experimental results and the numerical results using the correction factors of this study and Zhukauskas correlation is 10.0%, while that of reference correlation is 47.5%.

  • PDF

Heat Transfer Characteristics of Individual Row of Fin and Tube Heat Exchangers

  • Chang Keun-Sun;Kweon Young-Chul;Kim Young-Jae;Jeong Ji-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.2
    • /
    • pp.49-56
    • /
    • 2006
  • Heat transfer performances of individual row of two-row fin and tube heat exchangers are experimentally investigated. Tested are four heat exchangers which are geometrically identical with the exception of fin shape, slit or louver, and that the fins between the first row and the second row are connected or separated. The tube diameter and fin spacing of the heat exchangers examined are 7mm and 1.4mm, respectively. All thermal fluid measurements are made using a psychrometric calorimeter. In order to evaluate air-side heat transfer coefficients of individual rows, tube-side water flow rates of individual rows are independently controlled such that the water-side temperature drops in each row remain at $5^{\circ}C$. Frontal air velocity varies in the range from 0.7m/s to 2.5m/s. Heat transfer coefficients are presented in terms of Colburn ${\jmath}-factor$. The results show that the heat transfer coefficient of the upstream row is larger than that for the downstream row at low Reynolds numbers.

Heat Transfer Analysis of a Heat Exchanger for an Air-Compressor of a Railway Vehicle Based on Cooling Air Flow Measurement (냉각공기 유속 측정에 기반한 철도차량용 공기압축기 열교환기의 열전달 특성 분석)

  • Ahn, Joon;Kim, Moo Sun;Jang, Seongil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.9
    • /
    • pp.447-454
    • /
    • 2017
  • In this study, local velocity distribution of cooling air in a heat exchanger used in an air compressor for a railway car was measured and heat transfer characteristics of the heat exchanger were analyzed. First, heat transfer coefficient and fin performance of the cooling air side were predicted and was checked if the fin of the heat exchanger was effectively used. Distribution of air flow rate at high temperature side was predicted through pipe network analysis and heat resistance at high temperature and low temperature side were predicted and compared. Spatial distribution of temperature in the interior and surface of the square channel constituting high-temperature side was predicted and appropriateness of the size of the heat exchanger was examined. As a result of the analysis, the present size of the heat exchanger could be reduced and it could be effective to promote heat transfer inside the heat exchanger rather than outside to improve performance of the heat exchanger.

Experimental Measurement and Numerical Computation on the Air-Side Forced Convective Heat Tranfer Coefficient in Plate Fin-Tube Exchangers (평판 핀 튜브 열교환기의 공기측 강제대류 열전달계수에 대한 실험 및 수치계산)

  • Yoon, Young-Hwan;Paeng, Jin-Gi;Yoon, Keon-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.9
    • /
    • pp.729-737
    • /
    • 2006
  • Air-side forced convective heat transfer of a plate fin-tube heat exchanger is investigated by experimental measurement and numerical computation. The heat exchanger consists of staggered arrangement of refrigerant pipes of 10.2 m diameter and the pitch of fins is 3.5 m. In the experimental study, the forced convective heat transfer is measured at Reynolds number of 1082, 1397, 1486, 1591 and 1649 based on diameter of refrigerant piping and mean velocity. Average Nusselt number for the convective heat transfer coefficient is also computed for the same Reynolds number by commercial software of STAR-CD with standard $k-{\varepsilon}$ turbulent model. It is found that the relative errors of average Nusselt numbers between experimental and numerical data are less than 6 percentage in Reynolds number of $1082{\sim}1649$. The errors between experiment and other correlations are ranged from 7% to 32.4%. But the correlation of Kim at al is closest to the experimental data within 7% of the relative error.

Air-Side Heat Transfer in Louvered Fin Heat Exchangers (Louvered fin 열교환기(熱交換器)의 공기측(空氣側) 열전달(熱傳達))

  • Kim, C.S.;Kwon, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.1
    • /
    • pp.82-86
    • /
    • 1989
  • A study has been conducted experimentally on heat transfer characteristics of the heat exchangers with louvered fins in air. The experimental results are as follows; 1. Mean heat transfer coefficient is decreased with increasing temperature difference and model III is the best at constant temperature difference. 2. Pressure drop is increased with increasing air velocity, but it is decreased as the heat transfer area increases. 3. $\bar{h}/^{\Delta}p$ is increased and then decreased as air velocity increases.

  • PDF