• Title/Summary/Keyword: Air shroud

Search Result 39, Processing Time 0.023 seconds

Computational Study of the Shr oud Shape & the ProBeller Fan (Shroud 형상에 대한 해석적 연구 및 '프로벨러 홴' 소개)

  • Han, Jae-Oh;Yu, Seung-Hun;Mo, Jin-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.638-641
    • /
    • 2008
  • Computational investigation was conducted to study the effects of the shape parameter of shroud on the performance of the outdoor unit of an air-conditioners. For this study the Design of Experiment(4-factor 3-level) was created and the an automatic program was composed using VBA to reduce the load of pre-process for CFD. The estimated mathematical equation was produced from this analysis and it was found that the gap between fan and shroud affects more heavily than the other parameters. As a result, the composition of the best parameters was verified that its flow rate was increased by 10 percents and sound pressure level was reduced by 1.2 dBA compare with the worst. And finally, a kind of Propeller fan with blades which were attached to the shroud, so-called 'ProBeller Fan' was introduced in this study.

  • PDF

An Analytical and Experimental Study on the Thermal Shroud Effect to Minimize Thermal Deformation of a High L/D Ratio Cylinder (장축 실린더의 열변형 최소화를 위한 차열관 효과 해석 및 실험 연구)

  • Ahn, Sang-Tae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.5
    • /
    • pp.54-63
    • /
    • 2007
  • A barrel is a high length-to-diameter ratio cylinder that is influenced by environmental factors such as sunlight, precipitation, wind and clouds. Cross-barrel temperature differences caused by uneven heating or cooling lead to thermal deformation that degrades accuracy. Therefore, a barrel is covered by thermal shrouds to minimize the type of thermal deformation, "fall-of-shot". In this paper, an analytical and experimental study is presented to design the thermal shrouds for a gun barrel and to evaluate the thermal shroud effect. First, an analytical study on the thermal shroud effect to minimize thermal deformation of a gun barrel by sunlight and wind is performed. The coupled analysis of thermal fluid dynamics of the air flow between a barrel and thermal shrouds and thermal stresses of a barrel Is performed to clarify both the thermal shroud effect and the drift in gun muzzle orientation by thermal deformation. Second, experiments are carried out to test and evaluate the thermal shroud effect on the performance of a gun barrel. The drift in gun muzzle orientation against the solar radiation is confirmed by the experiments, and the results well agree with the analytical estimation. Third, three principal design factors that are presumed to have an effect on the performance of the thermal shrouds are also analyzed; sorts of shroud materials, wall-thickness of thermal shrouds, and distance of the gap between a barrel and thermal shrouds.

Calibration of flush air data sensing systems for a satellite launch vehicle

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • This paper presents calibration of flush air data sensing systems during ascent period of a satellite launch vehicle. Aerodynamic results are numerically computed by solving three-dimensional time dependent compressible Euler equations over a payload shroud of a satellite launch vehicle. The flush air data system consists of four pressure ports flushed on a blunt-cone section of the payload shroud and connected to on board differential pressure transducers. The inverse algorithm uses calibration charts which are based on computed and measured data. A controlled random search method coupled with neural network technique is employed to estimate pitch and yaw angles from measured transient differential pressure history. The algorithm predicts the flow direction stepwise with the function of flight Mach numbers and can be termed as an online method. Flow direction of the launch vehicle is compared with the reconstructed trajectory data. The estimated values of the flow direction are in good agreement with them.

Fatigue Life of the Repair TIG Welded Hastelloy X Superalloy

  • SIHOTANG, Restu;CHOI, Sang-Kyu;PARK, Sung-Sang;BAEK, Eung-Ryul
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.26-30
    • /
    • 2015
  • Hastelloy X in this study was applied in jet engine F-15 air fighter as shroud to isolate the engine from outer skin. After 15 years operation at elevated temperature the mechanical properties decreased gradually due to the precipitation of continues second phases in the grain boundaries and precipitated inside the grain. The crack happened at the edge of the shroud due to the thermal and mechanical stress from jet engine. Selective TEM analysis found that the grain boundaries consist of $M_{23}C_6$ carbide, $M_6$ Ccarbide and small percentage of sigma(${\sigma}$) phase. Furthermore, it was confirmed the nano size of ${\sigma}$ and miu (${\mu}$) phase inside the grain. In this study, it was investigated the microstructure of the degraded shroud component and HAZ of repair welded shroud. In the HAZ, it was observed the dissolution of the $M_{23}C_6$ carbides and smaller precipitates, the migration of the undissolved larger $M_{23}C_6$ carbide and $M_6$ Ccarbide. It is also observed the liquation due to the simply melt of the segregated precipitates in the grain boundaries. Interestingly, the segregated second phases which simply melt in the grain boundaries more easily happened at higher heat input welding condition. High temperature tensile test was done at $300^{\circ}C$, $700^{\circ}C$ and $900^{\circ}C$. It was obtained that the toughness of welded sample is lower compare to the non-welded sample. The solution heat treatment at $1170^{\circ}C$ for 5 minutes was suggested to obtain a better mechanical properties of the shroud. The high cycle fatigue number of the repair welded shroud shows a much lower compare to the shroud. In addition, the high cycle fatigue number at room temperature after solution heat treatment was almost double compare to the before solution heat treatment under 420-500MPa stress amplitude. However, the high cycle fatigue number of repaired welded sample was shown a much lower compare to the non- welded shroud and solution treated shroud. One of the main reasons to decrease the tensile strength and the high cycle fatigue properties of the repair welded shroud is the formation of the liquid phase in HAZ.

Numerical Prediction of Flow Field in a Hard Disk Drive (하드 디스크 드라이브 내부의 유동장에 관한 수치적 연구)

  • Lee, Jae-Heon;Back, Y.R.;Kim, K.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.3
    • /
    • pp.206-214
    • /
    • 1991
  • Flow field in a hard disk drive has been predicted numerically. Theoretical model was constructed based on a commercially available hard disk drive with 40 Mega byte capacity. Since the gap between disk tip and shroud is not homogeneous in real hard disk drive, three kinds of gap size have been tested as computational model. The discussion has been made on the circumferential velocity, radial velocity, and pressure fields. As a result, the average shear stress on the disk surface was reduced as the gap size decreased. This means that the shroud should be designed compactly to reduce power consumption of the spindle motor.

  • PDF

Characteristics of flow rate according to design parameters of a shroud in outdoor unit (실외기 shroud 설계 인자에 따른 유량 특성)

  • Ryu, Ki-Jung;Kim, Min-Soo;Cha, Woo-Ho;Lee, Kwan-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.244-249
    • /
    • 2008
  • In this study, the characteristics of flow in outdoor unit were numerically analyzed. Parametric studies were performed to compare the effect of bell mouth height, fan height and fan width concerned with flow rate. The result indicated that the flow rate was dependent on the bell mouth height, while it was negligibly affected by the fan height and fan width. The fan width was found to affect the velocity distribution at heat exchanger face.

  • PDF

Effects of Stator Shroud Injection on the Aerodynamic Performance of a Single-Stage Transonic Axial Compressor (정익 슈라우드 공기분사가 단단 천음속 축류압축기의 공력성능에 미치는 영향)

  • Dinh, Cong-Truong;Ma, Sang-Bum;Kim, Kwang Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.1
    • /
    • pp.9-19
    • /
    • 2017
  • In this study, stator shroud injection in a single-stage transonic axial compressor is proposed. A parametric study of the effect of stator shroud injection on aerodynamic performances was conducted using the three-dimensional Reynolds-averaged Navier-Stokes equations. The curvature, length, width, and circumferential angle of the stator shroud injector and the air injection mass flow rate were selected as the test parameters. The results of the parametric study show that the aerodynamic performances of the single-stage transonic axial compressor were improved by stator shroud injection. The aerodynamic performances were the most sensitive to the injection mass flow rate. Further, the total pressure ratio and adiabatic efficiency were the maximum when the ratio of circumferential angle was 10%.

Jet Impingement Heat Transfer on a Pedestal Encountered in Chip Cooling (충돌제트를 이용한 pedestal 형상의 칩 냉각연구)

  • Lee, Dae-Hee;Chung, Seung-Hoon;Chung, Young-Suk;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.124-130
    • /
    • 2001
  • The heat transfer and flow measurements were made on a cylindrical pedestal mounted on a flat plate with a turbulent impinging air jet. The heat transfer coefficient distributions on the flat plate were measured using the shroud-transient technique and liquid crystal was used to measure the surface temperature. The jet Reynolds number (Re) is 23,000, the dimensionless nozzle-to-surface distance (L/d) from 2 to 10, the dimensionless pedestal diameter-to-height (H/D) from 0 to 1.5, the dimensionless 2nd pedestal diameter-to-height ($H/D_2$) from 0 to 0.4 and the distance from the stagnation point to 2nd pedestal (p/D). The results show that for H/D = 0.5 to 1.5, the Nusselt number distributions on the plate surface exhibit a maximum between $r/d\;{\cong}\;1.0$ and 1.5. The presence of the pedestal appears to cause the flow separation and reattachment on the plate surface, which results in the maximum heal transfer coefficient. Also, for p/D = 2.5 and $H/D_2$ = 0.3, the local Nusselt number in the region corresponding to $r/d\;{\cong}\;1.1$ was increased up to 50% compared to that for $H/D_2=0$.

  • PDF

Visualization of the Flow Pattern Between Co-rotating Disks in Shroud (원통형 케이스 내의 동시회전 디스크 내부 유동패턴의 가시화)

  • Kong, Dae-Wee;Joo, Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1661-1665
    • /
    • 2004
  • Hard disk drives (HDD) in computer are used extensively as data storage capacity. The trend in the computer industry to produce smaller disk drives rotating at higher speeds requires an improved understanding of fluid motion in the space between disks. Laser sheet and digital camera was used for 2-dimensional visualization of the unsteady flow between co-rotating disks in air with a cylindrical enclosure (or shroud). Geometric parameters are gap height (H) between disks, and gap distance (G) between disk tip and shroud. The lobe-structured boundary between inner region and outer region was detected by inserted particles, and the number of dominant vortices was determined clearly It is found from flow visualization that the number of vortex cells can be correlated with Reynolds number based on H which is defined as $Re_H={\Omega}RH/v$ ranging from $7.96{\times}10^2$ to $1.43{\times}10^4$, and decreases as the disk speed increases. The lobe pattern by vortex cells is changed to a circular pattern for the wide gap than narrow one.

  • PDF

Effects of Swirl Ratio on Combustion Characteristics in DI Diesel Engine (스월비 변화가 직접분사식 디젤기관의 연소특성에 미치는 영향)

  • Kwon, Soon-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.2
    • /
    • pp.149-153
    • /
    • 2003
  • Besides the fuel spray behavior and combustion chamber shape. an air motion has a key role on exhaust gas emission and performance in a DI diesel engine. A swirl ratio represents the ratio of the intake swirl velocity to the engine speed. The main purpose in this work is to investigate the effects of the swirl ratio to the combustion characteristics. A shroud valve machined to change the swirl ratio. Test was carry out by changing the engine speed, nozzle diameter and swirl ratio in a single cylinder diesel engine. From this study, the optimized combustion was found at swirl ratio 2.7. And it was also found that the increasing the maximum cylinder pressure with an increasing swirl ratio lead to decrease a smoke and to increase NOx.

  • PDF