• Title/Summary/Keyword: Air separation Module

Search Result 18, Processing Time 0.027 seconds

An Experimental Study of Heat Transfer Characteristics on the Electronic Module Arrangement (전자모듈의 배열에 따른 열전달특성의 실험적 연구)

  • Lee, Dae-Hee;Lee, Dae-Keun;Cha, Yoon-Seok;Lee, Jun-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2420-2425
    • /
    • 2007
  • Heat transfer from three-dimensional heat-generating modules was investigated. A simulated electronic module in an array configured with dummy module elements was used to measure the average heat transfer coefficients. Various module arrangements were tested using module spacings of 0.85 and 1.15 cm for six Reynolds numbers ranging from 500 to 975. The results show that a module placed in-line with and upstream of a heated module results in the heat transfer enhancement due to a high level in turbulence prompted by upstream modules. The highest enhancement occurs when the separation distance between modules is close to the module length in the flow direction. Flow visualization reveals laminar flow on the front of the first module, slow recirculation regions on the sides parallel to the air stream, and turbulence on the back side. It appears that the first module serves to trip the air stream and produce a high level of turbulence, which enhances the heat transfer rate downstream.

  • PDF

Pore Condensation-Based Separation of VOCs by a Microporous Ceramic Membrane (미세다공성 세라믹 막에서의 가공응축기구에 의한 휘발성 유기화합물의 분리)

  • Cha, Jun-Seok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.E
    • /
    • pp.19-28
    • /
    • 1996
  • A pore concensation-based separation technique was studied experimentally using toluene and xylene in a nitrogen stream. The removal rate of toluene and xylene on a microporous ceramic membrane was enhanced by increasing the partial pressure difference across the membrane, but the selectivity was reduced with increasing flux of nitrogen. This was found both in vacuum and pressure modes of operation. The experimental results from this study suggest that the pores mear the inlet portion of the module were filled with the organic solvent while the pores near the exit section of the module were slightly opened as the solvent concentration was depleted along the module. In the case of xylene, the rate of N$_{2}$ permeation was reduced considerably relative to toluene, resulting in a much higher separation gactor. Condensibility of xylene appeared to be higher than that of toluene, the potential for pore condensation-based separation of xylene was also found to be higher than that for toluene.

  • PDF

An Experimental Study of Heat Transfer Characteristics on the Electronic Module Arrangement (전자모듈의 배열에 따른 열전달특성의 실험적 연구)

  • Lee, Dae-Hee;Lee, Dae-Keun;Cha, Yoon-Seok;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.6
    • /
    • pp.407-412
    • /
    • 2008
  • Heat transfer from three-dimensional heat-generating modules was investigated. Simulated electronic module in an array configured with dummy module elements were used to measure the average heat transfer coefficients. Various module arrangements were tested using module spacings of 0.85 and 1.15 cm for six Reynolds numbers ranging from 500 to 975. The results show that a module placed in-line with and upstream of a heated module results in the heat transfer enhancement due to high turbulence intensity prompted by upstream modules. The highest enhancement occurs when the separation distance between modules is close to the module length in the flow direction. The laminar flow was observed on the front of the first module, slow recirculation regions on the sides parallel to the airstream, and turbulent flow on the back side. It appears that the first module serves to trip the air stream and produce a high level of turbulence, which enhances the heat transfer rate downstream.

Multi- effect air gap membrane distillation process for pesticide wastewater treatment

  • Pangarkar, Bhausaheb L.;Deshmukh, Samir K.;Thorat, Prashant V.
    • Membrane and Water Treatment
    • /
    • v.8 no.6
    • /
    • pp.529-541
    • /
    • 2017
  • A multi-effect air gap membrane distillation (ME-AGMD) module for pesticide wastewater treatment is studied with internal heat recovery, sensible heat of brine recovery, number of stages and the use of fresh feed as cooling water in a single module is implemented in this study. A flat sheet polytetrafluroethylene (PTFE) membrane was used in the 4-stage ME-AGMD module. The maximum value of permeate flux could reach $38.62L/m^2h$ at feed -coolant water temperature difference about $52^{\circ}C$. The performance parameter of the module like, specific energy consumption and gain output ratio (GOR) was investigated for the module with and without heat recovery. Also, the module performance was characterized with respect to the separation efficiency of several important water quality parameters. The removal efficiency of the module was found to be >98.8% irrespective water quality parameters. During the experiment the membrane fouling was caused due to the deposition of the salt/crystal on the membrane surface. The membrane fouling was controlled by membrane module washing cycle 9 h and also by acidification of the feed water (pH=4) using 0.1M HCl solution.

The Study on Small Aircraft Transportation System in Higher Volume Opreations (소형항공기의 고밀도 운용방안 연구)

  • Kim, Hyun-Su;Yoo, Byeong-Seon;Kang, Ja-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.2
    • /
    • pp.37-44
    • /
    • 2011
  • This paper summarizes the HVO concept and procedures, presents a summary of the research and results, and outlines areas where future HVO is required. This concept enables people to get their destinations through shortest paths with advanced air traffic control system and equipments. The concept's key feature is that pilots maintain their own separation from other aircraft using air-to-air datalink and on-board software which are needed for supporting flight information present on the high Way in the sky display and airborne internet. By assigning Self-Controlled Area which assume pilot have separation responsibility, controllers evaluated SATS HVO concept as a successful method on the view of reduced workload and increased traffic level on high volume operation.

Separation characteristics of separation devices using inlet water mixed with exhalation gases without a compressor (날숨이 혼합된 물을 사용한 압축기없는 용존기체 분리기의 분리 특성)

  • Heo, Pil Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.842-846
    • /
    • 2016
  • It's possible for a human to breathe under water, but the amount of dissolved oxygen in the water is small and a large amount of water is necessary to obtain sufficient dissolved oxygen from water. So, large separation system with large water pumps, having large surface areas, and large battery sources are needed. Exhalation gases are used to solve this problem. Theses gases contain some oxygen, nitrogen, and carbon dioxide; they contain less oxygen and more carbon dioxide compared to air. Therefore, reduction of the amount of carbon dioxide is necessary. If exhalation gases are employed appropriately, the separation device can be made more compact. Inlet water mixed with exhalation gases is supplied into the separation device, and dissolved gases are separated from the mixed water as it passes through the device. The inlet part of a typical separation system with a water delivery pump before the membrane module has more than one atmosphere. Hence, a compressor is used to mix the exhalation gases. In this study, the pressure at the inlet due to the use of a suction pump after the membrane module was less than one atmosphere; hence, compressors were not required. Separation characteristics were studied using a separation device without a compressor. The use of exhalation gases led to an increase in the amount of dissolved gases being separated. As the amount of inlet exhalation gases was increased, the separation of dissolved gases was increased as well.

Pilot Scale Test of Non-woven Fabric Filter Separation Activated Sludge Process for Practical Application on Domestic Wastewater Reclamation (파일럿 규모의 침지식 부직포 여재 활성슬러지 공정의 시스템 처리 특성에 관한 연구)

  • Lee, Sang-Woo;Choi, Chul-hoi;Park, Young-mi;Seo, Gyu-Tae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.289-294
    • /
    • 2006
  • A pilot scale non-woven fabric filter separation activated sludge system was investigated for practical application on domestic wastewater reclamation and reuse. The system was operated in A/O (Anaerobic/Oxic) process with submerged filter module in the aerobic compartment. In the test of two types of filter materials ($70g/m^2$ and $35g/m^2$), the initial flux (0.42m/d) could be maintained for about three months by regular air backwashing of $70g/m^2$ filter at 0.3m water head. The removal efficiency of organic matter by the system was BOD 93.3%, CODcr 96.3%, SS 96.7%. The effluent quality was 7.8mg/L, 12mg/L and 5mg/L for BOD, CODcr and SS, respectively. The water quality was enough to meet a standard for domestic reuse without human contact. T-N removal efficiency was 49.9% at internal recycle rate 2Q and C/N ratio 3.3. The removal efficiency of T-P was 50% with average effluent concentration, 2.6mg/L.

Development and Characteristic Study of a Portable Gas Chromatography (소형 GC 모듈의 개발 및 특성)

  • Lee, Myeong-Gi;Oh, Jun-Sik;Jung, Kwang-Woo
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.157-162
    • /
    • 2011
  • In the present study, we developed a portable GC module for real-time, quantitative determinations of gas mixtures in air sample. Capillary or packed column was coiled together with a heater wire and thermocouple in a small case. Together with the small and light weight sensors and valves as well as the rechargeable carrier gas canister, which permits collection and separation of samples, this system can determine the components of complex mixtures of air contaminants at low concentrations with a duty cycle of 10 min. When measured the various samples with a FID and TCD, the system showed, for a capillary column, a good resolution (R=8.3), high sensitivity, reproducibility, and linear dynamic range greater than three orders of magnitude. These results indicate that the portable GC module is expected to be used for a wide range of applications, particularly for in situ environmental monitoring, chemical processes, and regulation of contaminant emission.