• 제목/요약/키워드: Air pressure in a tunnel

검색결과 186건 처리시간 0.025초

철도터널 통풍공의 내경변화에 따른 공기역학적 성능 (The aerodynamic performance of air-shafts with different inner diameters in the railroad tunnel)

  • 김동현;강부병;신민호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.578-584
    • /
    • 2001
  • Purpose of the present study is to investigate the aerodynamic performances of air-shafts with different inner diameters in a single track tunnel for reducing pressure fluctuations and micro pressure waves. Three configurations of air-shafts with different inner diameters were examined for comparison of aerodynamic performances. Experiments were performed with a 1/61-scale moving model rig for the tunnel of 0.764 km length and the train of 4 cars per 1 unit. The results showed the reduction effect of the maximum pressure fluctuations in tunnel and micro-pressure waves radiating towards the surroundings from the tunnel exit according to the increase of the diameter of 10 air-shafts spaced equally.

  • PDF

철도터널내 압력변동 및 터널 미기압파 저감 시험장치개발에 관한 연구 (Development of a new test facility for the study of pressure transients in tunnel and micro-pressure waves radiated from the tunnel exit on the railroad)

  • 김동현;오일근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.611-618
    • /
    • 2000
  • The test facility of the 1/60-scale models for the train-tunnel interactions was recently developed to investigate the effects of entry portal shapes, hood shapes and air-shafts for reducing the micro-pressure waves radiating to the surroundings of the tunnel exits by KRRI in Korea. The launching system of train model was chosen as air-gun type. In present test rig, after train model is launched, the blast wave by the driver did not enter to inside of the tunnel model. The train model is guided on the one-wire system from air-gun driver to the brake parts of test facility end. Some cases of the experiments were compared with numerical simulations to prove the test facility.

  • PDF

철도터널 통풍공의 공기역학적 성능에 대한 연구 (The study for the aerodynamic effects of air-shafts in the railway tunnel)

  • 김동현;강부병;신민호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.341-348
    • /
    • 2001
  • The purpose of present study is to investigate for reducing pressure fluctuations in the case of installing the air-shafts on the side wall of the tunnel with small cross-sectional area on conventional line. Experiments were performed with a 1/61-scale moving model rig for the tunnel of 0.764 km length in the condition of tunnel cross-section area of $28 m^2$. According to the results, the maximum pressure fluctuation is reduced by 45 % for 19 air-shafts. This results have the speed-up effects of about 33.4 km/h for the train running in tunnel.

  • PDF

소단면 기존 철도터널에서 통풍공 개수에 따른 터널내 풍압변동 저감효과에 대한 연구 (The effect of air-shafts on reducing the pressure fluctuations in the tunnel with small cross sectional area on conventional line)

  • 김동현;강부병;이재환;신민호;이성욱
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 추계학술대회 논문집
    • /
    • pp.382-389
    • /
    • 2000
  • The purpose of present study is to investigate for reducing pressure fluctuations in tile case of installing tile air-shafts on the side wall of the tunnel with small cross-sectional area on conventional line. Experiments were performed with a 1/61-scale moving model rig for the tunnel of 0.764km length in the condition of tunnel cross-section area of 28 ㎡ According to the results, the maximum pressure fluctuation is reduced by 45% for 19 air-shafts. This results have the speed-up effects of about 33.4km/h for the train running in tunnel.

  • PDF

도로터널 제트팬 모형 실험 (The Jet-fan Model Test for a Road Tunnel Ventilation)

  • 류재홍;유용호;김진
    • 설비공학논문집
    • /
    • 제15권8호
    • /
    • pp.630-640
    • /
    • 2003
  • As tunnel ventilation has recently been playing a major role in the tunnel construction and maintenance, longitudinal ventilation systems with jet fans have been utilized a great deal because they are economical and effective. However, due to the length of tunnels and heavy traffic, it is hard to take the field measurements. In this study, therefore, the computer simulation and the model experiment of producing a wind tunnel were carried out simultaneously and the results were compared. The ultimate objective of this research was to interpret the air flow pattern inside the tunnel with a jet-fan was set up, and to offer the useful data for jet-fan installation and operation. The experiment was carried out with varying the jet-fan diameters, location of installation, the discharge velocity. Result showed that as the initial static pressure came up with the negative pressure, the tunnel air flowed into the inside of tunnel from outside due to the entrainment-effect and the backflow-phenomenon by separation-effect was observed in the lower half part of the tunnel. As the jet-fan was getting closer to the tunnel wall, the entrainment-effect caused by the interaction with the wall was increased; however, the mixing distance and irregular flow section became longer, and also the air pressure loss generated by wall friction was large.

고속 열차 터널의 공기압력 감소를 위한 압력 제어 시스템 (Effect of a Pressure Relief System in a High-speed Railway Tunnel)

  • 서상연;하희상;이상필
    • 터널과지하공간
    • /
    • 제28권3호
    • /
    • pp.247-257
    • /
    • 2018
  • 고속 열차는 승객과 화물을 대량으로 빠른 시간에 운송할 수 있어 세계 여러 나라에서 고속철도 건설이 증가하고 있다. 열차가 고속으로 주행할 경우 열차의 전두부에 공기 저항이 발생하며, 이러한 공기 저항을 감소시키기 위하여 열차의 형상을 유선형으로 설계한다. 고속으로 주행하는 열차가 터널에 진입할때, 터널 내에서 발생한 공기 저항으로 인하여 개활지 주행 시 보다 훨씬 큰 동력이 요구된다. 따라서 열차가 터널에 진입할 때 열차에 작용하는 공기 저항을 감소시키기 위하여 열차의 주행 속도를 감소시킨다. 이렇게 열차의 속도를 감소시킬 경우, 고속 열차의 운송 능력 및 장점이 감소되기 때문에 터널 내에서 열차 주행으로 인하여 발생되는 공기 저항을 감소시키는 설비가 필수적이다. 이 연구에서는 터널 내에서 열차의 고속 주행을 위하여 필요한 공기 압력 제어 시스템의 효과를 분석하기 위하여 1차원 수치해석을 수행하였다. 1차원 수치해석 프로그램을 통하여, 터널의 단면적 및 공기압력 제어 덕트의 단면적과 배치 간격이 터널 내에서 발생하는 공기 저항에 미치는 영향을 상세히 분석하였다.

압축공기 발사기에 단선 와이어 유도방식을 적용한 1/60축척 터널주행 열차모형 시험기 개발에 대한 연구 (Development of 1/60th Scale Moving Model Rig Using the Compressed Air Launcher and One-Wire Guidance System of Train Model)

  • 김동현;오일근
    • 대한기계학회논문집B
    • /
    • 제25권5호
    • /
    • pp.634-644
    • /
    • 2001
  • The test facility of a 1/60-scale model for train-tunnel systems has been recently developed to investigate the effects of tunnel portal shapes, hood shapes and air-shafts for reducing the micro-pressure waves radiating towards the surroundings from the tunnel exit. The present test rig has been advanced from a 1/70-scale facility at NLR in Netherlands. The NLR test rig has the two-wise guidance system that needs two ears attached on the external surface of a model train nose. Therefore, their train models have irregular nose shapes. The main characteristics of the present facility are that the train model is guided by only one wire from the compressed air launcher to the absorber parts of test facility and the wire guidance hole is located at the axial center of a train model. In the present test rig, after a train model is launched, the air jet from the launcher does not enter the tunnel model. Experimental results were compared with numerical predictions to prove the performance of the test facility.

Numerical Analysis on the Effect of Parameters that Affect the Flow Rate through the Tunnel with Jet Fan Ventilation System

  • Kim, Sa-Ryang;Hur, Nahmkeon;Kim, Young-Il;Kim, Ki-Jung
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권4호
    • /
    • pp.178-187
    • /
    • 2003
  • In this study, ventilation flow rate and pressure rise through a tunnel are simulated numerically using computational fluid dynamics (CFD) for various conditions such as roughness height of the surface of tunnel, swirl angle and hub/tip ratio of jet fan, and entrance and exit effects. By using a modified wall function, friction factor can be predicted with respect to the Moody chart within 10% of error for the circular pipe flow and 15% for the present tunnel. For more accurate design, the effect of the swirl angle and hub/tip ratio of jet fan, which is not included in the theoretical equation of pressure rise by jet fan needs to be considered.

승객 이명감 기준을 만족하는 고속철도 터널 최소 단면적에 대한 연구 (A STUDY ON THE MINIMUM CROSS-SECTIONAL AREA OF HIGH-SPEED RAILWAY TUNNEL SATISFYING PASSENGER EAR DISCOMFORT CRITERIA)

  • 권현빈
    • 한국전산유체공학회지
    • /
    • 제20권3호
    • /
    • pp.62-69
    • /
    • 2015
  • Pressure change inside cabin as well as in tunnel has been calculated to assess the passenger pressure comfort of high-speed train. $C-STA^{TM}$, a CFD program based on axi-symmetric Navier-Stokes equation and Roe's FDS has been used to simulate the pressure change in tunnel during a high-speed train passing through it. To present the relative motion between the train and the tunnel, a modified patched grid scheme based on the structured grid system has been employed. The simulation program has been validated by comparing the simulation results with field measurements. Extensive parametric study has been conducted for various train speed, tunnel cross-sectional area and tunnel length to the pressure change in cabin. KTX-Sancheon(KTX2) high-speed train has been chosen for simulation and the train speed have been varied from 200 km/h to 375 km/h. The tunnel length has been varied from 300 m to 7.5 km and tunnel area from $50m^2$ to $120m^2$. Total 504 simulations have been conducted varying the parameters. Based on the database produced from the parametric simulations, minimum tunnel cross-sectional area has been surveyed for various train speeds based on Korean regulation on pressure change in cabin.

직선터널에서 지하철 열차의 교차운행 시 반사파 간섭에 따른 유동 특성 비교분석 (Comparative Analysis of Flow Characteristics Using Reflected Pressure Wave at Crossing of Subway Trains in Straight Tunnel)

  • 이득선;조정민;이명호;성재용
    • 설비공학논문집
    • /
    • 제30권3호
    • /
    • pp.123-129
    • /
    • 2018
  • In this study, CFD is used to compare and analyze the flow characteristics using reflected pressure wave during the intersection of two trains in straight tunnel. Two tunnels of different lengths; 600 m and 3,400 m were designed and numerical analysis of the flow characteristics of two tunnels carried out by setting the crossing state of the two trains at a constant velocity of 27 m/s form the center of the tunnel. The simulation model was designed using the actual tunnel and subway dimensions The train motion was achieved by using the moving mesh method. For the numerical analysis, $k-{\omega}$ standard turbulence model and an ideal gas were used to set the flow conditions of three-dimensional, compressible and unsteady state. In the analysis results, it was observed that the inside of the long tunnel without interference of the reflected pressure wave was maintained at a pressure lower than the atmospheric pressure and that the flow direction was determined by the pressure gradient and shear flow. On the other hand, the flow velocity in the short tunnel was faster and the pressure fluctuation was noted to have increased due to the reflected pressure wave, with more vortices formed. In addition, the flow velocity was noted to have changed more irregularly.