• Title/Summary/Keyword: Air permeability factor

Search Result 70, Processing Time 0.022 seconds

Consumer Needs and Pattern Sensibility of Jacquard fabrics for Raincoat (레인코트용 자카드 직물의 소비자 요구도 및 패턴 이미지 감성 평가)

  • Kim, Jeong-Hwa;Lee, Jung-Soon
    • Fashion & Textile Research Journal
    • /
    • v.16 no.4
    • /
    • pp.645-652
    • /
    • 2014
  • This study identifies consumer needs and a pattern sensory evaluation of jacquard fabrics for raincoats using quick-drying-absorbing polyester. We investigate the consumer's consciousness and raincoat improvements. Twelve kinds of jacquard fabrics were developed for use in this study. Developed jacquard fabrics were assessed subjectively by 152 university students using a 7-point scale of 26 consumer needs and 31 pattern image sensory descriptors. Data were analyzed by SPSS. The major results were: There was a need for consumers to improve the front fastener type, cuff fastener, mesh patch position, and raincoat pocket position. The most important parameter to choose raincoat fabric was waterproof and the other parameters were vapor-porous/water repellent, design, color, fashionability, air-permeability and easy-put on/off. The pattern image sensibility of jacquard fabrics was explained by seven factors: gorgeous, simple, cute, futuristic, ethnic, feminine, and cool. A higher pattern preference was found in the jacquard fabrics of unique, sporty, natural, luxurious, and trendy images. The pattern preference was predicted at 45.3% with gorgeous, simple, pure, cute, futuristic factors. The correlation coefficient between the pattern image sensibility factor 1 (gorgeous) and pattern preference was 0.674 and with factor 3 (cute) was 0.416, and with factor 6 (cool) was 0.209. The 4 factors (gorgeous, simple, cute, futuristic) were selected as a significant pattern image sensibility that influenced preference.

Numerical Simulation of the Liquid Flow in the Lower Part of the Blast Furnace - A Cold Flow Case (고로하부 액체유동에 대한 수치해석 사례 - 냉간유동)

  • Jin, Hong-Jong;Choi, Sang-Min;Jung, Jin-Kyung
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.2
    • /
    • pp.33-41
    • /
    • 2008
  • The high permeability of the gas in the molten iron of the dripping zone of the blast furnace is a major factor in achieving the stable operation of a furnace with high productivity. Basic studies of the liquid flow behavior in a packed bed are necessary to grasp the effect of various operational changes on conditions in the dropping zone. Molten iron and slag together playa critical role in the lower zone, transporting mass and energy, while impairing and redistributing the gas flow. In turn, molten iron and slag undergo physical and chemical changes, and are redistributed radially as they descend to the hearth. In this research, mathematical formulations are derived for the gas and the liquid. The solid phase is fixed with constant porosity. The information for the molten iron and slag includes the hold-up, velocity, pressure, and information related to the areas of interaction between the gas and the liquid, and the solid and the liquid. Predictable results include the velocity, pressure and temperature distribution. Additional parameters include the packed particle size and the air blast rate.

  • PDF

The Effect of Geometrical Structure on the Moisture Transport Properties of Nonwoven Batting Materials (부직포 충전재의 구조적 특성이 수분전달 특성에 미치는 영향-단층구조와 이층구조 부직포의 비교-)

  • 김희숙;나미희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.6
    • /
    • pp.810-818
    • /
    • 2000
  • The purpose of this study was to analyze the effect of geometrical structure on the moisture transport properties of nonwoven batting materials. Two types of nonwovens were used such as single and double layered nonwovens. Steady and dynamic state water vapor transport properties were measured by absorption, evaporation and cobaltous chloride method respectively. The results of this study were as follows: 1) Geometrical structure affected water vapor evaporation, but there were no differences between single and double layered nonwovens in moisture absorption. Thickness and air permeability were influencing factor on water vapor transport rate. 2) Directionality of double layered nonwoven was observed both in steady and dynamic state moisture transport. There were differences between upper and lower layer of double layered nonwoven both in moisture absorption rate and color change by cobaltous chloride method. 3) In dynamic state of water vapor transport rate, single layered nonwoven reached more rapidly at the established relative humidity. It was confirmed that geometrical structure affected water vapor evaporation and hydrophilicity of fiber affected moisture absorption because there were much more water vapor transport rate by evaporation than absorption within the same period of time.

  • PDF

Water Vapor Transport Properties of Nonwoven Batting Materials (부직포 충전재의 수분투파성)

  • Kim, Hui-Suk;Na, Mi-Hui;Kim, Eun-Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.1
    • /
    • pp.72-79
    • /
    • 1998
  • Journal of the Korean Society of Clothing and Textiles Vol. 22, No. 1 (1998) p. 72∼79 The purpose of this study was to investigate the effects of geometrical structure and fiber type on the water vapor transport properties of nonwoven batting materials. Two types of fiber were used such as polyester and wool. Correlation between physical properties of nonwovens and water vapor transport rate was analyzed by Pearson Correlation. Steady and dynamic state water vapor transport properties were measured by absorption, evaporation and cobaltots chloride method respectively. The results were as follows: 1) In geometrical structure, thickness of nonwovens was effected on absorption and evaporation rate and air permeability was more influencing factor on water vapor transport rate than porosity. There were no decreasing of water vapor transport rate in hydrophilic fiber at high relative humudity. 2) The hydrophilicity of fiber affected steady and dynamic state water vapor permeabilities and wool nonwoven showed higher water vapor transport rate than polyester at high relative humidity. 3) Thickness showed higher correlation coefficient with water vapor transport rate than other physical properties of nonwovens.

  • PDF

A Study on the Acoustical characteristics of Curtain Fabrics (part 1) -by Constructional Characteristics of Curtain Fabrics- (Curtain감의 음향특성에 관한 연구(제1보) -Curtain감의 구성특성을 중심으로-)

  • Chung Un Ja;Kang Kyung Ja;Cho Hyun Hok
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.3 no.2
    • /
    • pp.23-27
    • /
    • 1979
  • The normal transmission characteristics of curtain fabrics were measured by sound level meter. Transmission coefficient was calculated by difference of incidence SPL and transmission SPL. The relation between this value and factors relating to the structure of curtain fabrics were investigated. The results of experiment were shown follow; 1. Transmission coefficients(approximately over $95\%$) of sound in curtain fabrics differ from according to the frequency. It was lower in 500Hz frequency, on the other hand, higher in 400, 640. 1000Hz frequency. It had a tendency to frequency among the samples. 2. The greater cover factor of sample was, the smaller the transmission coefficient of sound was. It was not influenced by thickness. 3. Air permeability was increased as the transmission coefficient of sound were greater. (correl. ation coefficient=0.83) 4. In the case of special single cloth weave(special honeycomb weave), there sometimes took place that transmission SPL was greater than incidence SPL.

  • PDF

Characteristics of Ternary Blended Cement Concrete Using Fly Ash and Silica Fume for Post-Tensioned Concrete Pavement Application (포스트텐션 콘크리트 포장 적용을 위한 실리카흄과 플라이 애시를 사용한 삼성분계 콘크리트의 특성)

  • Choi, Pan-Gil;Shim, Do-Sick;Lee, Bong-Hak
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.41-47
    • /
    • 2009
  • Post-tensioned concrete pavement(PTCP) was developed to built long-span concrete pavement(120 m span) and to maintain long-term service life(over 40 years) of concrete pavement. In the present study, research for high-durable concrete was conducted to utilize the advantage of PTCP construction method efficiently. First of all, 20% of fly ash(by binder weight) was replaced to control alkali silica reaction. Second, silica fume was applied to improve the water-permeability and early-age strength. Results of tests for mechanical properties, water-permeability resistance, and surface-scaling resistance of ternary blended cement concrete showed that the early-age strength was improved significantly with addition of silica fume. The water-permeability resistance was improved from "Low" to "Very Low"(ASTM C 1202). However, surface-scaling resistance was decreased with an increase of silica fume, therefore, content of silica fume should be kept in less than 5%(by binder weight) to assure field application considering durability. The results of air-void analysis showed that durability factors were improved since spacing factors were estimated as 250$\pm$15 micron in adjusted mixtures.

Durability Assessment for Crushed Sand Wet-mix Shotcrete Mixed with Mineral Admixtures (부순모래를 사용한 습식 숏크리트의 광물성 혼화재료 혼입에 따른 내구성 평가)

  • Lee, Kyeo-Re;Han, Seung-Yeon;Nam Gung, Kyeong;Yun, Kyong-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.607-614
    • /
    • 2014
  • The purpose of this dissertation was to investigate the effect of mineral admixtures, such as fly ash, blast furnace slag powder, meta kaolin and silica fume, on the basic properties and durability of crushed sand shotcrete, selecting a series of shotcrete mixtures with a variable admixture. Compressive strength increased as the content of mineral admixtures increased, specially it was the most effective when using meta kaolin both at sample specimen and core after shotcreting. Rapid chloride ion permeability test and sulfuric acid resistance test showed that both durability increased as the substitute rate of mineral admixture increased. In air void analysis with image analysis, the targeted the spacing factor and specific surface were not satisfied because air-entrained agent was not used.

A Hydraulic Conductivity Model Considering the Infiltration Characteristics Near Saturation in Unsaturated Slopes (불포화 사면의 포화 부근 침투 특성을 고려한 수리전도도 모델)

  • Oh, Se-Boong;Park, Ki-Hun;Kim, Jun-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.37-47
    • /
    • 2014
  • Unsaturated hydraulic conductivity (HC) is integrated theoretically from soil water retention curves (SWRC) by Mualem capillary model, but the prediction of HC is extremely sensitive to small variation of matric suction near saturation. Near saturation, the Mualem HC based on smooth SWRC decreases abruptly and has problems in the reliability of hydraulic behavior and the stability of numerical solutions. To improve van Genuchten-Mualem (VGM) HC, the van Genuchten SWRC model is modified within range of low matric suction (arbitrary air entry pressure). At an arbitrary air entry pressure, the VG SWRC is linearized in log scale until full saturation. The modified VG SWRC does not affect the fit of actual retention behavior and either the parameters of original VG SWRC fit. Using the modified VG SWRC, the VGM HC is modified to integrate for each interval decomposed by arbitrary air entry pressure. An analytical solution on modified VGM HC is proposed each interval, to protect the rapid change in HC near saturation. For silty soils, VGM models of HC function underestimate the unsaturated permeability characteristics and especially show rapid reduction near saturation. The modified VGM model predicts more accurate HC functions for Korean weathered soils. Furthermore, near saturation, the saturated HC is conserved by the modified VGM model. After 2-D infiltration analysis of an actual slope, the hydraulic behaviors are compared for VGM and the modified models. The prediction by the proposed model conserved the convergence of solutions on various rainfall conditions. However, the solution by VGM model did not converge since the conductivity near saturation reduced abruptly for heavy rainfall condition. Using VGM model, the factor of safety is overestimated in both initial and final stage during heavy rainfall. Stability analysis based on infiltration analysis could simulate the actual slope failure by the proposed model on HC.

Effect of Gonadotropin on $Ca^{++}$ Uptake in Follicle-Enclosed Mouse Oocytes Cultured in Vitro (배양된 생쥐여포에서 $Ca^{++}$ Uptake에 대한 Gonadotropin의 영향)

  • Bae, In-Ha;Kang, Shin-Hae
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.18 no.2
    • /
    • pp.153-162
    • /
    • 1991
  • The present study was undertaken to clarify the role of calcium ion as a factor for the maturation of follicle-enclosed mouse oocytes. Follicles were isolated with two sharp needles under a stereomicroscope from mouse(ICR) ovaries which were treated PMSG 5 IU 45 hours previously. Isolated follicles were cultured for 14-16 hours in an organ culture system at $37^{\circ}C$, 5% $CO_2$ in air and in a 100% humidified incubator by treatment of hCG, EDTA and $^{45}Ca^{++}$. Culture medium was Modified Hank's Balanced Salt Sol. (MHBS) and addition of hCG (human chorionic gonadotropin) was made into two doses level 0.4 IU and 0.8IU from the stock sol. and also $^{45}Ca^{++}$ was treated in the culture medium. To explain the role of calcium, calcium chelating agent EDTA was treated to the culture of the mouse follicle-enclosed oocytes. Two observations were made in the present study; nucleus phase and $^{45}Ca^{++}$ uptake into the oocyte. HCG induced oocyte maturation in the follicle about two folds as much as the control group, whereas there is no difference in oocyte maturation between 0.4 IU and 0.8 IU of hCG. Optimum level of hCG seems to be 0.4 IU/ml in the mouse follicle culture. HCG stimulated $^{45}Ca^{++}$ uptake into the oocyte of the follicles by two folds. $^{45}Ca^{++}$ uptake in the control group is about 2.5 folds in comparison of the EDTA(1.71mM) treated group. However, calcium uptake in the EDTA treated groups tends to increase depending on the decrease of EDTA concentration. These observations suggest that firstly, hCG stimulates maturation of the oocyte of the follicle, secondly, $Ca^{++}$ influx is induced by hCG and thirdly, $Ca^{++}$ influx by the treatment of EDTA decreases as a dosage-dependent process. This $Ca^{++}$ uptake may take place by the changes of permeability which was induced by hCG treatment. That is, $Ca^{++}$ influx may trigger the resumption of oocyte maturation. It is further necessary in the future study how this $Ca^{++}$ uptake is induced by hCG and increases permeability of the follicle and oocyte.

  • PDF

The Analysis of the Painting Work Clothes Clothing Comfort and Wearer Mobility Considering the Work Environment in the Machine and Shipbuilding Industries

  • Park, Gin-Ah;Park, Hye-Won;Bae, Hyun-Sook
    • Journal of Fashion Business
    • /
    • v.16 no.3
    • /
    • pp.13-31
    • /
    • 2012
  • The purpose of the study was to analyze the work clothes' clothing comfort and wearer mobility of painting workers with the consideration of the work environment features in the machine and shipbuilding industries in South Korea. A questionnaire survey was conducted for the study, which consisted of questions on the clothing comfort and wearer mobility aspects of painting work clothes by clothes types and body parts. The work clothes' clothing comfort and wearer mobility levels were scaled in 5 points i.e. 1(: very tight/very uncomfortable) to 5(: very slack/very comfortable). The painting work environmental hazardous features were considered as high impact levels of workplace temperature, oxygen deficiency, organic solvent, toxic gas factors while metal fragment factor only impacts 'low' in the painting processes with the findings throughout this study. Since the painting work consisted of surface washing and the spray and touch-up painting processes, which was carried out in an outdoor work place, the painting work clothes should meet high performance of waterproofing from the painting material and air permeability specially in summer as well as thermal performance in winter. The subjects painting workers' assessment of the existing work clothes' clothing oppression was in the levels between 3 (i.e. moderate) and 4 (i.e. comfortable) in a range of 1 to 5 points. The existing painting work clothes' wearer mobility was evaluated 'very uncomfortable' in all work clothes parts, especially, armhole length, biacromial breadth, sleeve length of the jumper; and body rise, waist, hip, thigh and knee circumferences of the pants.