• Title/Summary/Keyword: Air permeability factor

Search Result 70, Processing Time 0.022 seconds

Air Contents & Size Distribution of Air Voids in Concrete Using Image Analysis (이미지 분석에 의한 콘크리트의 공극 분포 및 공기량 분석)

  • Kwon, Hyouk-Chan;Jeong, Won-Kyong;Yun, Kyong-Ku
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.157-164
    • /
    • 2004
  • Air voids in hardened concrete have an important influence on concrete durability such as resistance of freezing and thawing, permeability and surface scaling resistance. Linear traverse method and point count method in ASTM standard method have been widely used to estimate the air void system in hardened concrete. However, these methods are not used at present time, because they are is exhausted much time and effort. In previous study, air voids system of concrete was estimated by spacing factor. The purpose of this study organizes image analysis method by analyzing air contents, air voids distributions by diameters, air voids system as well as spacing factors after hardened concrete. The experimental variables institute of depth of specimen(top, middle, bottom), air contents(AE contents 0, 0.01, 0.03%).

  • PDF

Microstructure and Permeability Property of Si Bonded Porous SiC with Variations in the Carbon Content (Si 결합 다공성 탄화규소의 미세구조 및 통기도 특성 -카본 함량 변화 중심)

  • Song, In-Hyuck;Park, Mi-Jung;Kim, Hai-Doo;Kim, Young-Wook;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.546-552
    • /
    • 2010
  • The achievement of high gas permeability is a key factor in the development of porous SiC ceramics for applications of hot gas filter, vacuum chuck, and air spindle. However, few reports on the gas permeability of porous SiC ceramics can be found in the literature. In this paper, porous SiC ceramics were fabricated at temperatures ranging from $1600^{\circ}C$ to $1800^{\circ}C$ using the mixing powders of SiC, silicon, carbon and boron as starting materials. In some samples, expanded hollow microspheres as a pore former were used to make a cellular pore structure. It was possible to produce Si bonded SiC ceramics with porosities ranging from 42% to 55%. The maximum bending strength was 58MPa for the carbon content of 0.2 wt% and sintering temperature of $1700^{\circ}C$. The increase of air permeability was accelerated by addition of hollow microsphere as a pore former.

Measurement of effective thermal conductivity and permeability on aluminum foam metal (알루미늄 발포금속의 유효열전도도와 침투율의 측정)

  • 백진욱;강병하;김서영;현재민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.185-192
    • /
    • 1999
  • Effective thermal conductivities and pressure-drop-related properties of aluminum foam metals have been measured. The effects of porosity and cell size in the aluminum foam metal are investigated in detail. The porosity of the foam metal, considered in the present study, varies from 0.89 to 0.96 and the cell size from 0.65㎜ to 2.5㎜. The effective thermal conductivity is evaluated by comparing the temperature gradient of the foam metal with that of the thermal conductivity-known material. The pressure drop in the foam metal is measured by a highly precise electric manometer while air is flowing through the aluminum foam metal in the channel. The results obtained indicate that the effective thermal conductivities are found to be increased with a decrease in the porosity while the effective thermal conductivities ire little affected by the cell size at a fixed porosity. However, the pressure drop is strongly affected by the cell size as well as the porosity. It is seen that the pressure drop is increased as the cell size becomes smaller, as expected. The minimum pressure drop is obtained in the porosity 0.94 at a fixed cell size. A new correlation of the pressure drop is proposed based on the permeability and Ergun's coefficient for the aluminum foam metal.

  • PDF

A study on the application and manufacture of paper sheet containing lyocell fiber( I ) (Lyocell 섬유를 함유한 종이의 제조 및 적용에 관한 연구( I ))

  • 김종열;류운형;유성종;김정열;신창호;김영호
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.22 no.1
    • /
    • pp.99-106
    • /
    • 2000
  • In order to investigate the applicability of lyocell fiber to filter paper, papper sheets were manufactured with the addition of lyocell fibers in various length(1.5 denier: 2, 3, 4mm) and content(10, 30, 50%) and their physical characters, such as fibrilation rate, adsorption efficiency of methylene blue(MB), paper formation, and crimping ability, etc, were tested. The level of main fibrilation from lyocell fiber was higher in wet beating process than that in free beating because of the higher strength of lyocell fiber compared with wood fiber. Fibrilation could be observed at the degree of beating over 30$^{\circ}$ SR in wet beating with Valley beater. The air permeability and tear factor of the paper increased and the paper formation index decreased according to the increase of fiber length. The weak binding force of lyocell fiber in spite of its higher fiber strength, might be a limitng factor in addition of lyocell fiber to the natural wood pulp in manufacturing the paper having the needed physical properties. High contents of wood pulp decreased air permeability, the breaking length, tear factor, the bursting strength, and paper formation index in paper sheets. As the contents of lyocell increased from 10% to 100%, the adsorption efficiency of MB was elevated to 1.7-7.9 times compared with that in 100% wood pulp. But the length of lyocell fiber did not affect the MB adsorption.

  • PDF

Effect of Hollow Composite Yarn Characteristics to the Comfort Property of Fabrics for High Emotional Garment (중공 복합사 특성이 고감성 의류용 직물의 쾌적성에 미치는 영향)

  • Kim, Hyun-Ah
    • Science of Emotion and Sensibility
    • /
    • v.17 no.4
    • /
    • pp.71-78
    • /
    • 2014
  • Composite draw textured yarns(DTY) and air jet textured yarns(ATY) with hollow PET filament have been used for making high emotional fabrics including light weight sports wear garments. This study investigated effect of hollow composite yarns and fabric structural parameters to the comfort properties related to the moisture and thermal transport phenomena for the composite fabrics made of DTY and ATY with hollow PET filament. Wicking property of hollow composite fabric was superior at the high pore size fabric and was not influenced by fabric cover factor. Wicking property of the fabric with ATY was better than that of the fabric with DTY. On the other hand, drying rate of fine pore sized fabric was shorter than that of large pore sized fabric and drying rate of high multi yarn fabric with low cover factor and small pore size was superior than that of hollow composite fabric. The pore size of the fabric was dominant factor in the air permeability and thermal conductivity of hollow composite fabric. High pore sized fabric showed high air permeability and thermal conductivity of hollow composite fabric was nonlinearly inversely proportional to pore size of the fabric.

Estimation on Affecting Factors and Contribution Rate for Air Permeability of Sawdust as Bulking Agent on Composting (퇴비화 첨가재인 톱밥의 공기투과성에 미치는 영향요인 및 기여도 평가에 관한 연구)

  • Kim, Byung Tae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.52-62
    • /
    • 2015
  • This study estimated the contribution rates of inlet air flow, moisture content, air-filled porosity and particle size on the total pressure drop for the sawdust used as the bulking agent in the composting. The statistical model for pressure drop including the affecting factors was proposed.($R^2=0.998{\sim}0.950$) While the laminar air flow(v) and particle size(SIZE*v) had the positive relations to the total pressure drop, the turbulent air flow($v^2$), moisture content(MC*v) and air-filled porosity(AFP*v) had the negative relations. Total pressure drop sharply increased with increasing of the inlet air flow. And the most significant factors affecting to total pressure drop were the particle size(SIZE*v) as positive factor and air-filled porosity(AFP*v) as negative factor. The contribution rate to total pressure drop by the particle size(SIZE*v) was continuously increased with increasing of the inlet air flow, but the contribution rate by air-filled porosity(AFP*v) was decreased. And total pressure drop was little changed even though the increasing of moisture content above the range of dry moisture content 0.25. The contribution rates of affecting factors had the different tendencies with increasing of the moisture content, especially in the negative factors as air-filled porosity(AFP*v) and moisture content(MC*v). For effective composting process, it is preferable to select the sawdust with higher air-filled porosity as bulking agent to enhance the air permeability.

Effect of Nonsolvent and Metal Salt Concentration on Oxygen Separation Performances of Polycarbonate/Metal Salt Membrane (Polycarbonate/Metal Salt 막의 산소분리특성에 미치는 비용매와 금속염 농도의 영향)

  • Seo, Sang-Hun;Lee, Woo-Tai
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.1
    • /
    • pp.61-69
    • /
    • 2001
  • Polycarbonate(PC) membranes for oxygen enrichment from air were prepared by the wet phase inversion method. In order to improve oxygen separation performances of the PC membrane, the effect of the added ethanol(nonsolvent) and $CuCl_2$(metal salt) concentration in the casting solution on morphology, oxygen permeability ami $O_2/N_2$ separation factor of the membrane was studied. In addition, tensile strength and elongation at break of the membrane were investigated. An asymmetric membrane with a dense top layer and a porous sublayer was obtained. The thickness of the dense top layer decreased with increasing amount of nonsolvent additive. Compared with pure PC membrane without additive(metal salt), the oxygen permeability and $O_2/N_2$ separation factor of the $PC/CuCl_2$ membrane are significantly improved. The oxygen permeability and $O_2/N_2$ separation factor is $5.25{\times}10^{-9}cm^3(STP){\cdot}cm/cm^2{\cdot}sec{\cdot}cmHg$ and 4.5, respectively. This improvement might be due to good interaction between metal salt and oxygen.

  • PDF

Flow and Heat Transfer Characteristics of Aluminum Foam Porous Fins (발포알루미늄 다공핀의 열유동특성)

  • 김서영;백진욱;강병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.511-518
    • /
    • 2000
  • The present experimental study investigates the impact of porous fins on the pressure drop and heat transfer characteristics in plate-fin heat exchangers. Systematic experiments have been carried out in a simplified model of a plate-porous fin heat exchanger at a controlled test environment. Comparison of performance between the porous fins and the conventional louvered fins has been made. The experimental results indicate that friction and heat transfer rate are significantly affected by permeability as well as porosity of the porous fin. The porous fins used in the present study show a similar air-side performance to the louvered fin. The correlations of friction and modified j-factor are also given for the design of the plate-porous fin heat exchanger.

  • PDF

Thermal Characteristics of Men's Suit Ensembles (남성용 정장의 온열특성 연구)

  • Song, Min-Kyu;Jeon, Byung-Ik
    • Fashion & Textile Research Journal
    • /
    • v.1 no.3
    • /
    • pp.264-274
    • /
    • 1999
  • The thermal resistance of 60 men's suits for summer and winter was measured to determine their thermal characteristics and physical properties, including air permeability, weight, and thickness of the jackets and trousers consisted of the ensembles were measured to predict the thermal resistance of garments and ensembles. In this study, general physical properties of the men' suit ensembles were determined. In general, thickness and weight of winter ensembles were greater than those of summer ensembles. A factor which could distinguish the difference between summer and winter ensembles was the air permeability. The air permeability of summer ensembles was 3~6 times greater than those of winter ensembles. For the thermal characteristics, the thermal resistance of winter ensembles were higher than those of summer ensembles. When the wind was involved, the thermal resistance of both ensembles decreased up to 30%. In addition, the equations were developed to predict the thermal resistance of the garments and ensembles when there was no air velocity and the thermal resistance of the ensembles with air velocity of 1.2 m/sec. Looking at the equations, thickness, weight, and size of the garments were the definite factors that affect the thermal resistance of the samples.

  • PDF

Variation of some Properties on Contton Knitted Under Wears by Laundering (세탁에 의한 면내의의 실용특성 변화)

  • 정운자
    • Journal of the Korean Home Economics Association
    • /
    • v.17 no.4
    • /
    • pp.23-28
    • /
    • 1979
  • In order to measure the change of constructional and some properties of knitted under wears by laundry, constructional properties, such as fabric count , yarn count, loop length and cover, factor, and some properties , such as shrinkage, tearing, strength, air permeability, electrostatic charge of under wears sold in the market were tested. The results of the experiment can be summarized as follows.1. Interlock and rib were increased in wale direction after laundry and decreased in course direction , plain was decreased, in both direction after laundry. 2. Loop form of plain was changed more than those interlock and rib after laundry. 3. Tearing strength was decreased 51% in wale direction, and 70% in course direction after 20 times laundry. Air permeability was generally increased. 4. Electro static charge was increased 9 times after laundry.

  • PDF