• Title/Summary/Keyword: Air mass flow model

Search Result 233, Processing Time 0.025 seconds

Development of a prediction model relating the two-phase pressure drop in a moisture separator using an air/water test facility

  • Kim, Kihwan;Lee, Jae bong;Kim, Woo-Shik;Choi, Hae-seob;Kim, Jong-In
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3892-3901
    • /
    • 2021
  • The pressure drop of a moisture separator in a steam generator is the important design parameter to ensure the successful performance of a nuclear power plant. The moisture separators have a wide range of operating conditions based on the arrangement of them. The prediction of the pressure drop in a moisture separator is challenging due to the complexity of the multi-dimensional two-phase vortex flow. In this study, the moisture separator test facility using the air/water two-phase flow was used to predict the pressure drop of a moisture separator in a Korean OPR-1000 reactor. The prototypical steam/water two-phase flow conditions in a steam generator were simulated as air/water two-phase flow conditions by preserving the centrifugal force and vapor quality. A series of experiments were carried out to investigate the effect of hydraulic characteristics such as the quality and liquid mass flux on the two-phase pressure drop. A new prediction model based on the scaling law was suggested and validated experimentally using the full and half scale of separators. The suggested prediction model showed good agreement with the steam/water experimental results, and it can be extended to predict the steam/water two-phase pressure drop for moisture separators.

Experimental Study on Development of Air Leakage Model and Performance Characteristics of a Desiccant Rotor (제습로터의 공기누설모델 개발 및 성능 특성에 관한 실험적 연구)

  • Kang, Byung-Ha;Pi, Chang-Hun;Chang, Young-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.37-45
    • /
    • 2012
  • This study investigates the pressure leakage characteristics of a desiccant rotor with a brush-type air seal. Through a pressure leakage experiment, a correlation equation for the leakage air flow rate is obtained as a function of the air seal area and pressure difference. Using this equation, an air leakage model for the desiccant rotor is developed. By comparing simulation results with the experimental results for the desiccant rotor, the accuracy of the air leakage model is demonstrated. A performance test of a desiccant rotor with various air flow rates is carried out. Using the air leakage model, the effective mass flow rate and air leakage rate are found. In addition, the characteristics of the air leakage are analyzed for a desiccant cooling system using the developed air leakage model.

Circulating Concurrent-flow Drying Simulation of Rapeseed (순환식 병류형 유채씨 건조 시뮬레이션)

  • Han, Jae-Woong;Keum, Dong-Hyuk;Kim, Woong;Duc, Le Anh;Cho, Sung-Ho;Kim, Hoon
    • Journal of Biosystems Engineering
    • /
    • v.35 no.6
    • /
    • pp.401-407
    • /
    • 2010
  • In this study, computer simulations were conducted to assess the use of a circulating concurrent-flow dryer for rapeseed drying and to determined the effect of this drying method on the germination ratio of rapeseed after the drying process was complete. The simultaneous heat and mass transfer between air and rapeseed in a concurrent-flow dryer was examined by simulation. The drying simulation was based on several parameters with sequent time series. Equations concerning air psychrometrics, physical properties, thermal properties, equilibrium moisture content, thin layer drying of rapeseed, etc. were all combined to solve the simulation models. Based on energy and mass transfer in the concurrent-flow drying model, a simulation program for the circulating concurrent-flow rapeseed dryer was built along with a detailed description of the mathematical solution to the model. A pilot scale circulating concurrent-flow dryer(200 kg/batch) was used to verify the fitness of the simulation program. A comparison between the experimental data and the model predicted results was presented and discussed. The drying parameters and germination ratio were analyzed and the accuracy of the simulation program was evaluated. The simulation program proved to be reliable and was shown to be a convenient tool for predicting rapeseed drying and germination ratio of rapeseed in a concurrent-flow dryer.

Effects of slip velocity on air gap membrane distillation process

  • Loussif, Nizar;Orfi, Jamel
    • Membrane and Water Treatment
    • /
    • v.5 no.1
    • /
    • pp.57-71
    • /
    • 2014
  • In this study, a theoretical model for the transport phenomena in an Air Gap Membrane Distillation used for desalination was developed. The model is based on the conservation equations for the mass, momentum, energy and species within the feed water solution as well as on the mass and energy balances on the membrane sides. The rarefaction impacts are taken into consideration showing their effects on process parameters particularly permeate flow and thermal efficiency. The theoretical model was validated with available data and was found in good agreement especially when the slip condition is introduced. The rarefaction impact was found considerable inducing an increase in the permeate flux and the thermal efficiency.

Structural and Flow Analysis for Designing Air Plate of a Fuel Cell (구조 해석과 유동 해석을 통한 연료전지 공기판 설계)

  • Park, Jung-Sun;Yang, Ji-Hae;Lee, Won-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.585-590
    • /
    • 2003
  • The distributions of mass flow rate and pressure are major factors to deside the performance of a proton exchange membrane fuel cell (PEMFC). These factors are affected by channel configuration of air plate. In this paper. structural analysis is performed to investigate deformation of porous media. Two kind of models are suggest for flow analyses. Deformed porous media and undeformed porous media are considered for air plate model. The Numerical flow analysis results with deformed porous media and undeformed porous media had some discrepancy in pressure distribution. The pressure and velocity in a working condition are numerically calculated to predict the performance of the air plates. Distributions of the parameters in the PEMFC are analyzed numerically under steady-state conditions.

  • PDF

Design Criterion for the Size of Micro-scale Pt-catalytic Combustor in Respect of Heat Release Rate (열 방출률에 대한 마이크로 백금 촉매 연소기의 치수 설계 기준)

  • Lee, Gwang Goo;Suzuki, Yuji
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.4
    • /
    • pp.49-55
    • /
    • 2014
  • Design criterion for the size of micro Pt-catalytic combustor is investigated in terms of heat release rate. One-dimensional plug flow model is applied to determine the surface reaction constants using the experimental data at stoichiometric butane-air mixture. With these reaction constants, the mass fraction of butane and heat release rate predicted by the plug flow model are in good agreement with the experimental data at the combustor exit. The relationship between the size of micro catalytic combustor and mixture flowrate is introduced in the form of product of two terms-the effect of fuel conversion efficiency, and the effect of chemical reaction rate and mass transfer rate.

Convective Boiling of R-l34a in a Bundle of Smooth Tubes

  • Kim, Jung-Oh;Cho, Jin-Pyo;Kim, Nae-Hyun;Choi, Kuk-Kwang
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.2
    • /
    • pp.79-87
    • /
    • 2002
  • In this study, flow boiling experiments were performed using R-134a on a plain tube bundle. Tests were conducted for the following range of variables; quality from 0.1 to 0.9, mass flux from 8kg/$m^2$s to 26 kg/$m^2$s and heat flux from 10kW/$m^2$ to 40kW/$m^2$. The heat transfer coefficients were strongly dependent on the heat flux. However, they were almost independent on the mass flux or quality. The data are compared with the modified Chen model, which predicted satisfactorily ($\pm$30%) the data. The Original Chen model, however, did not adequately predict the effect of quality. The reason may be attributed to the flow pattern of the present test, where the bubbly flow prevailed for the entire test range. The heat transfer coefficients of the tube bundle were 6~40% higher than those of the single tube pool boiling.

A Study on the Development of Air Pollution Model Applicable to the Complex Terrain (복잡지형에서의 대기순환모델에 관한 연구)

  • Yoon J. Y.;Yi S. C.;Hong M. S.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.109-116
    • /
    • 1997
  • The objective of this paper is to develop a computational model for the prediction of the pollutant spread from a mass source over a complex terrain. The model comprises a two-dimensional, steady state flow model and a concentration model which employs the results of the computed flow field. The computational model is applied to predict the spread of pollutants for Sanbon city, and the two cases have been compard with the results of SF/sub 6/ trace experiments.

  • PDF

A Study on the Airflow near the Cold Heat Source Using CFD in Merchandising Store (CFD를 이용한 대형매장 냉열원 주변의 공기유동에 관한 연구)

  • Cho Sung Woo;Park Min Young;Im Young Bin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.7
    • /
    • pp.629-634
    • /
    • 2005
  • This paper performed to predict vertical temperature distribution and air flow near cold heat source in the mass merchandising store. At the height of 150 cm, the vertical air temperature difference between the results of CFD and of measurement field showed $10\%$ near the refrigeration zone and $8.8\%$ near the freezing zone. Therefore, it regarded as appropriate for the using CFD to investigate airflow near the heat sources. The 3 kinds of CFD model were divided by the disposition of diffuser/exhaust and diffuser air temperature. At the refrigeration and freezing zone in the Model 2 and 3, the temperature difference between the front and the back of human model were showed $6.8^{\circ}C\;and\;3.9^{\circ}C$ with diffuser air temperature $17^{\circ}C$ and were showed $6.8^{\circ}C$ and $4^{\circ}C$ with diffuser air temperature $19^{\circ}C$.

Development and Its Application of a Discrete Fracture Flow Model for the Analysis of Gas-Water Transient Flow in Fractured Rock Masses Around Storage Cavern (지하저장공동 주변 불연속 암반에서의 가스-물 천이유동해석을 위한 개별균열 유동모델의 개발 및 응용)

  • 나승훈;성원모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.705-712
    • /
    • 2000
  • The fluid generally flows through fractures in crystalline rocks where most of underground storage facilities are constructed because of their low hydraulic conductivities. The fractured rock is better to be conceptualized with a discrete fracture concept, rather continuum approach. In the aspect of fluid flow in underground, the simultaneous flow of groundwater and gas should be considered in the cases of generation and leakage of gas in nuclear waste disposal facilities, air sparging process and soil vapor extraction for eliminating contaminants in soil or rock pore, and pneumatic fracturing for the improvement of permeability of rock mass. For the purpose of appropriate analysis of groundwater-gas flow, this study presents an unsteady-state multi-phase FEM fracture network simulator. Numerical simulation has been also conducted to investigate the hydraulic head distribution and air tightness around Ulsan LPG storage cavern. The recorded hydraulic head at the observation well Y was -5 to -10 m. From the results obtained by the developed model, it shows that the discrete fracture model yielded hydraulic head of -10 m, whereas great discrepancy with the field data was observed in the case of equivalent continuum modeling. The air tightness of individual fractures around cavern was examined according to two different operating pressures and as a result, only several numbers of fractures neighboring the cavern did not satisfy the criteria of air tightness at 882 kPa of cavern pressure. In the meantime, when operating pressure is 710.5 kPa, the most areas did not satisfy air tightness criteria. Finally, in the case of gas leaking from cavern to the surrounding rocks, the resulted hydraulic head and flowing pattern was changed and, therefore, gas was leaked out from the cavern ceiling and groundwater was flowed into the cavern through the walls.

  • PDF