• Title/Summary/Keyword: Air layer

Search Result 1,868, Processing Time 0.032 seconds

Numerical simulation of air layer morphology on flat bottom plate with air cavity and evaluation of the drag reduction effect

  • Hao, W.U.;Yongpeng, O.U.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.510-520
    • /
    • 2019
  • To investigate the morphology characteristics of air layer in the air cavity, a numerical method with the combination of RANS equations and VOF two-phase-flow model is proposed for a plate with air cavity. Based on the model above, the dynamic and developmental process of air layer in the air cavity is studied. Numerical results indicate that the air layer in the plate's air cavity exhibits the dynamic state of morphology and the wavelength of air layer becomes larger with the increasing speed. The morphology of air layer agrees with the Froude similarity law and the formation of the air layer is not affected by the parameters of the cavity, however, the wave pattern of the air layer is influenced by the parameters of the cavity. The stable air layer under the air cavity is important for the resistance reduction for the air layer drag reduction.

Thermal Insulation Property due to Internal Air-layer Content of Warm Multi Layer Materials by using Numerical Analysis (수치해석을 이용한 다겹보온자재의 내부공기층 함유에 따른 보온 특성)

  • Chung, Sung-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.97-103
    • /
    • 2012
  • This study investigates thermal insulation properties of multi layer materials depending on thickness of air layers. Numerical analysis on the heat flow of different insulating materials was conducted to identify whether their temperature distributions demonstrate the reduced rate of heat transfer conclusively or not. Analytical model is divided into two categories. One is to distinguish temperature distribution of the air-layer materials from the non-air layer ones. The other is to compare the efficacy between eight-layered insulating materials with no air-layer contained and three-layered insulating materials which include an air-layer definitely. In the latter case, the identical thickness is assigned to each material. The effect of thermal insulation by including an air-layer is verified in the first analytical model. The result of the second model shows that the insulation of the eight-layered materials is coterminous at the three-layered ones with an air-layer and the thermal insulation of the two materials is imperceptible. The benefits of cost and energy saving are anticipated if air-layers are efficiently incorporated in multi layer insulating materials in a greenhouse.

Effect of Air Additions on the Growth Characteristics of the Compound Layer during Oxynitriding in50%NH3+Air+N2 Atmosphere (50% NH3-Air-N2가스분위기에서 Oxynitriding시 Compound Layer의 성장 특성에 미치는 공기첨가효과)

  • Kim, Y.H.;Lee, Y.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.3
    • /
    • pp.206-218
    • /
    • 1994
  • In 50%$NH_3+Air+N_2$ atmospheres, the effect of air additions on the growth characteristics of the compound layer during oxynitriding at $570^{\circ}C$ for 2hr in carbon and alloy steels has been investigated. The ammount of apparent residual ammonia during oxynitriding has shown to be increased with air additions(9~36 Vol. %) and X-ray diffraction analysis of case oxynitreded has shown that the compound layer consist of ${\varepsilon}-Fe_{2-3}$(N, C) phase and ${\gamma}^{\prime}-Fe_4$(N,C) phase. In the case of carbon steels, the thickness of oxide layer, compound layer and porous layer and the amount of ${\varepsilon}-Fe_{2-3}$(N,C) phase in the compound layer were increased with additions of air in 50%$NH_3+N_2$ atmospheres. At the same gas composition, the thickenss of oxide layer, compound layer and porous layer in alloy steels showed slightly thin layer thickness compared to those of carbon steels and the ${\gamma}^{\prime}-Fe_4$(N,C) phase in the compound layer of alloy steels was found barely. Therefore, the most obvious effect of air addition in the gas nitriding atmosphere has been found to in crease further kinetics of nitriding reaction.

  • PDF

Numerical Simulations of Diurnal Variations of Air Temperature and Relative Humidity in the Urban Canopy Layer (도시 캐노피 층 기온과 상대습도의 일변화에 관한 수치 모의)

  • Park, Kyeongjoo;Han, Beom-Soon;Jin, Han-Gyul
    • Atmosphere
    • /
    • v.31 no.3
    • /
    • pp.295-309
    • /
    • 2021
  • Diurnal variations of air temperature and relative humidity in the Urban Canopy Layer (UCL) of the Seoul metropolitan area are examined using the Weather Research and Forecasting model coupled with the Seoul National University Urban Canopy Model. The canopy layer air temperature is higher than 2-m air temperature and exhibits a more rapid rise and an earlier peak in the daytime. These result from the multiple reflections of shortwave radiation and longwave radiation trapping due to the urban geometry. Because of the absence of vegetation in the UCL and the higher canopy layer air temperature, the canopy layer relative humidity is lower than 2-m relative humidity. Additional simulations with building height changes are conducted to examine the sensitivities of the canopy layer meteorological variables to the urban canyon aspect ratio. As the aspect ratio increases, net sensible heat flux entering the UCL increases (decreases) in the daytime (nighttime). However, the increase in the volume of the UCL reduces the magnitude of change rate of the canopy layer air temperature. As a result, the canopy layer air temperature generally decreases in the daytime and increases in the nighttime as the aspect ratio increases. The changes in the canopy layer relative humidity due to the aspect ratio change are largely determined by the canopy layer air temperature. As the aspect ratio increases, the canopy layer relative humidity is generally increased in the daytime and decreased in the nighttime, contrary to the canopy layer air temperature.

Structural Control of the Compound Layers formed during Nitrocarburising in NH3-Air-C3H8 Atmospheres (NH3-Air-C3H8 분위기에서 Nitrocarburisng시 형성된 Compound Layer의 조직제어)

  • Kim, Y.H.;Choi, K.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.4
    • /
    • pp.289-301
    • /
    • 1995
  • The effect of Air/$C_3H_8$ gas addition on the compound layer growth of steels nitrocarburised in $NH_3+Air+C_3H_8$ mixed gas atmospheres was investigated. It is considered that amount of residual $NH_3$ was varied according to alternation of Air/$C_3H_8$ mixing ratio and volume content. The compound layer formed from nitrocarburising was composed of ${\varepsilon}-Fe_{2-3}$(C, N) and ${\gamma}^{\prime}-Fe_4$(C, N). According as Air/$C_3H_8$ mixing ratio increased, the superficial content of ${\gamma}^{\prime}-Fe_4$(C, N) within the compound layer was increased, at the same time the growth rate of compound layer and porous layer was increased. In the case of alloy steel at the fixed gas composition, the growth rate of compound layer and porous layer was worse than carbon steel and compound layer phase composition structure primarily consisted of E phase. As the carbon content of materials was increasing in the given gas atmospheres, the growth rate of compound layer and porous layer was increased and the superficial content of ${\varepsilon}-Fe_{2-3}$(C, N) within the compound layer was increased.

  • PDF

Natural Convection for Air-Layer between Body Skin and Clothing with Considering Coefficient of Permeability (투과계수를 고려한 의복과 인체 사이의 공기층에서 자연대류 특성)

  • 지명국;배강렬;정효민;정한식;추미선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1282-1287
    • /
    • 2001
  • This study presents the numerical analysis of natural convection of a micro- environments with air permeability in the clothing air-layer. As a numerical model the clothing air layer of shoulder and arm were adopted. Finite volume method for two-dimensional laminar flow was used for the analysis of flow and thermal characteristics of velocity, temperature and concentration in the air layer between body and clothing. As temperature boundary conditions, a body skin has a high temperature with $34^{\circ}C$ and the environmental temperatures are 5, 15 and $25^{\circ}C$ for various permeability coefficients. The distributions of concentration, temperature and velocity are shown that two large cells form at horizontal and vertical air layer, respectively. As the temperature difference between body skin and environment decreases, the heat transfer is decreased rapidly.

  • PDF

Air Layer Effect on the Performance Improvement of a Cross-Flow Hydro Turbine

  • Choi, Young-Do;Shin, Byeong-Rog;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.4
    • /
    • pp.37-43
    • /
    • 2010
  • The purpose of this study is not only to investigate the effects of air layer in the turbine chamber on the performance and internal flow of the cross-flow turbine, but also to suggest a newly developed air supply method. Field test is performed in order to measure the output power of the turbine by a new air supply method. CFD analysis on the performance and internal flow of the turbine is conducted by an unsteady state calculation using a two-phase flow model in order to embody the air layer effect on the turbine performance effectively. The result shows that air layer effect on the performance of the turbine is considerable. The air layer located in the turbine runner passage plays the role of preventing a shock loss at the runner axis and suppressing a recirculation flow in the runner. The location of air suction hole on the chamber wall is very important factor for the performance improvement. Moreover, the ratio between air from suction pipe and water from turbine inlet is also significant factor of the turbine performance.

A Study on the Cold Reserving Performance of PET Bottle with Shrinkage Film

  • Hong, Dae Gi;Lyu, Min Young
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.123-127
    • /
    • 2019
  • Shrink film is currently being used for plastic container lavels to avoid the use of glue. Polyethylene terephthalate (PET) bottle lavels also use shrink films in the same PET materials for easy recycling of PET bottles. An air layer is generated between the shrink film and PET bottle surface due to the bent shape of the bottle surface. This air layer can insulate external heat, as air has a relatively lower thermal conductivity. In this study, the insulation property of the air layer was examined by computer simulation. Two PET bottle models were used, one with and the other without an air layer between the PET bottle surface and lavel. The two bottle models were filled with cold liquid and exposed to room temperature for 6 h, and the temperatures of the contents were then compared. The results showed that the temperature of the contents in the bottle with the air layer was lower than that without the air layer by at least $2^{\circ}C$. This study suggests an effective lavel design of PET bottles while ensuring that the temperature of the bottle contents is maintained.

A Study on the Air Pollution Potential in the Central Part of Korea (中部地方 各地의 大氣汚染潛在力에 관한 硏究)

  • 李鍾範
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.41-47
    • /
    • 1991
  • Air pollution potentials of the 7 cities in the central part of Korea were obtained with the mean wind speed within the mixed layer and the mixed layer height calculated by the Jump Model. Seasonal variation of the afternoon mixed layer height in Seoul area shows that low in winter and high in summer. Annual mean of the morning air pollution potential was lowest in Incheon and highest in Wonju. On the other hand annual mean of the afternoon air pollution potential was lowest in Incheon and highest in Chuncheon. Relatively low air pollution potential in Incheon can be explained as high mixed layer height and the effect of sea breeze.

  • PDF

Natural Convection for Air-Layer between Clothing and Body Skin (의복과 인체의 공기층에 관한 자연대류 특성)

  • Ji, M.K.;Bae, K.Y.;Chung, H.S.;Jeong, H.M.;Chu, M.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.648-653
    • /
    • 2001
  • This study represents the numerical analysis of natural convection of a microenvironments with a air permeability in the clothing air-layer. The clothing air layer of shoulder and arm was used for numerical analysis model. As a numerical analysis method, we adopted a finite volume method for two-dimensional laminar flow, and analyzed the flow and thermal characteristics of velocity, temperature and concentration in the air layer between body and clothing. As a temperature boundary conditions, we considered that a body skin has a high temperature with $34^{\circ}C$ the environmental temperatures are $5,\;15\;and\;25^{\circ}C$ for various permeability coefficients. The distributions of concentration, temperature and velocity were showed that two large cells were. formed at horizontal and vertical air layer, respectively. As the temperature difference between body skin and environment decrease, the heat transfer was decreased rapidly.

  • PDF