• 제목/요약/키워드: Air induction system

검색결과 141건 처리시간 0.023초

SI엔진의 정상상태 유량 특성에 관한 실험적 연구 (An Experimental Study of the Air Flow Rate Characteristics at Steady State in an SI Engine)

  • 박경석;고상근;노승탁;이종화
    • 한국자동차공학회논문집
    • /
    • 제5권6호
    • /
    • pp.1-12
    • /
    • 1997
  • In an SI engine, the characteristics of the air flow is important not only for the design of the intake system geometry but also for the accurate measurement of the induction air mass. In this study, an air flow rate measurement using the ultrasonic flow meter and hot wire flow meter was conducted at the upstream of the intake port and the throttle. At the upstream of the intake port, the pulsating flow into the cylinder affected by the pressure wave was detected directly with the flow meters instead of pressure sensors. At the upstream of the throttle, the reverse flow phenomena were showed by comparing the flow pattern measured by the hot wire air flow meter and the ultrasonic air flow meter. The results of this study can be used for the analysis of the tuning effect in the intake manifold and estimation of the error in real time measurement for the air flow rate.

  • PDF

Melting and draining tests on glass waste form for the immobilization of Cs, Sr, and rare-earth nuclides using a cold-crucible induction melting system

  • Choi, Jung-Hoon;Lee, Byeonggwan;Lee, Ki-Rak;Kang, Hyun Woo;Eom, Hyeon Jin;Park, Hwan-Seo
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1206-1212
    • /
    • 2022
  • Cold-crucible induction melting (CCIM) technology has been intensively studied as an advanced vitrification process for the immobilization of highly radioactive waste. This technology uses high-frequency induction to melt a glass matrix and waste, while the outer surface of the crucible is water-cooled, resulting in the formation of a frozen glass layer (skull). In this study, for the fabrication of borosilicate glass waste form, CCIM operation test with 60 kg of glass per batch was conducted using surrogate wastes composed of Cs, Sr, and Nd as a representative of highly radioactive nuclides generated during spent nuclear fuel management. A 60 kg-scale glass waste form was successfully fabricated through melting and draining processes using a CCIM system, and its physicochemical properties were analyzed. In particular, to enhance the controllability and reliability of the draining process, an air-cooling drain control method that can control draining through air-cooling near drain holes was developed, and its validity for draining control was verified. The method can offer controllability on various draining processes, such as molten salt or molten metal draining processes, and can be applied to a process requiring high throughput draining.

A Study on Improvement of Operation Efficiency of Magnetic Levitation Train Using Linear Induction Motor

  • Park, Sang Uk;Zun, Chan Yong;Park, Doh-Young;Lim, Jaewon;Mok, Hyung Soo
    • International Journal of Railway
    • /
    • 제9권2호
    • /
    • pp.41-45
    • /
    • 2016
  • In this paper, a study on the efficiency improvement of the magnetic levitation train using the LIM (Linear Induction Motor) was presented. The maglev train has the advantage of being environmentally friendly since much less noise and dust is produced. However, due to structural limitation, compared to a rotating induction motor, linear induction motor, the main propulsion engine of the maglev train has a relatively greater air gap and hence has the lower operation efficiency. In this paper, the relationship between the operating condition of the train and the slip frequency has been investigated to find out the optimum slip frequency that might improve the efficiency of the magnetic levitation train with linear induction motor. The slip frequency is variable during the operation by this relationship only within a range that does not affect the levitation system of the train. After that, the comparison of the efficiency between the conventional control method with the slip frequency fixed at 13.5[Hz] and the proposed method with the slip frequency variable from 9.5[Hz] to 6.5[Hz] has been conducted by simulation using Simplorer. Experiments of 19.5[ton] magnetic levitation trains owned by Korea Institute of Machinery and Materials were carried out to verify the simulation results.

직렬공진 PWM인버터를 이용한 전자간절유도가열 열유체 에너지시스템과 그 성능평가 (Electromagnetic Indirect Induction Fluid Heating System using Series Resonant PWM Inverter and Its Performance Evaluations)

  • 김용주;김기환;신대철
    • 전력전자학회논문지
    • /
    • 제7권1호
    • /
    • pp.48-54
    • /
    • 2002
  • 본 논문에서는 간접 유도가열 되는 DPH시스템과 주파수 범위가 20kHz에서 50kHz사이에서 작동되는 전압형 직렬공진 고주파인버터를 이용하여 열 기체를 발생시키는 전압형 공진형 인버터에 관하여 설명하였다. 얇은 스텐레스 판재가 서로 스폿 용접되어 연결되어 있고 미세한 많은 구멍을 갖고있는 적층형 충진발열테로 특수하게 설계된 유도 가열기는 외부에 워크 코일로 감겨져 있는 불소수지계의 절연용기 안에 삽입되어 있다. 이 워크 코일은 공진형 인버터와 연결되어 있으며 유도가열기를 통해 흐르는 관 유체를 1단가열부에서 저압의 포화증기를 2단가열부에서 열방사성 증발유체를 생성하는 본 DPH시스템의 성능 및 효용성을 실용적인 측면에서 논의하고 평가 할 것이다.

가솔린 엔진의 성능, 연비, 배출 가스를 동시에 고려한 시뮬레이션 기반 흡기 다기관 길이 최적화 (Simulation-based Intake Manifold Runner Length Optimization for Improving Performance, Fuel Consumption and Emission of a Gasoline Engine)

  • 강용헌;최동훈
    • 한국자동차공학회논문집
    • /
    • 제18권5호
    • /
    • pp.62-67
    • /
    • 2010
  • Exhausting fossil fuel and increasing concern of air pollution have brought on the change of the focus of developing new vehicles from performance to fuel economy and emission. The gasoline engines adopting the naturally aspirated way use the throttle-body for engine load control. Therefore, its pumping loss increases more than that of the diesel engine, and also mostly operating in a partial load condition has bad influence on fuel economy and emission. In these days, the continuous variable valve timing system and variable induction system are adopted in order to improve fuel consumption and emission. In this study, we optimize the runner length and operate region of variable induction system to simulataneously improve the performance, fuel economy, and emission of gasoline engine with employing GT-Power as a CAE tool for engine analysis and PIAnO as PIDO tool for process integration and design optimization.

가변 흡기시스템에 의해 유도되는 흡입공기의 유동특성 평가를 위한 새로운 3차원 회전유동 지수에 관한 연구 (A Study on the New 3-D Angular Flow Index for Evaluation of In-Cylinder Bulk Flow Characteristics of the Air Induced by Variable Induction System)

  • 윤정의;남현식;김명환;민선기;심대곤;박병완
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.99-105
    • /
    • 2007
  • It is very important to clarify the 3-D angular flow characteristics of in-cylinder bulk motion in the developing process of variable induction system. In-cylinder flow induced by variable induction system is very complex, so we can not describe the in-cylinder bulk flow characteristics using the conventional swirl or tumble coefficient. In this study, we introduced the new 3-D angular flow index, angular flow coefficient($N_B$), for in-cylinder bulk flow characteristics. And also, to confirm the index, we carried out the steady flow rig test for intake port of test engine varying valve lift on the test matrix.

영상분 3고조파 전압을 이용한 속도센서없는 유도전동기 벡터제어 시스템의 파라미터 변동 보상 (A Compensation Method of Parameter Variations for the Speed-Sensorless Vector Control System of Induction Motors using Zero Sequence Third Harmonic Voltages)

  • 최정수;김진수;김영석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권2호
    • /
    • pp.75-82
    • /
    • 1999
  • A compensation method of the motor parameters using zero sequence third harmonic voltage is presented for the speed sensorless vector control of the induction motor considering saturation of the flux. Generally, the air-gap flux of the saturated induction motor contains the space harmonic components rotating with the synchronous frequency of the motor. Because the EMF of the saturated induction motor contains the zero sequence harmonic voltages at the neutral point of the motor, those harmonic voltages can be used as a saturation index. In this work, the rotor flux observer is firstly designed for the speed sensorless vector control of induction motor. And a novel measurement method of the space harmonic voltage and a compensation method of th LPF(Low Pass Filter) are proposed. For compensating the non-linear variations of the magnetizing inductance depending on the saturation level of the motor, the dominant third harmonic voltage of the motor is used as a saturation function of the air-gap flux. And the variation of the stator resistance owing to the motor temperature can also be measured with the phase angle between the impressed voltage vector and the zero sequence voltage. The validity of the proposed parameter compensation scheme in the speed sensorless vector control using rotor flux observer is verified by the result of the simulations and the experiments.

  • PDF

가변 흡.배기시스템에 의한 과급디젤기관의 체적효율 향상에 관한 연구 (A Study on the Volumetric Efficiency Improvement by Variable Induction & Exhaust System in a Turbocharged Diesel Engine)

  • 강희영;고대권
    • 동력기계공학회지
    • /
    • 제12권1호
    • /
    • pp.13-19
    • /
    • 2008
  • In this study, a variable induction and exhaust system is applied to turbocharged diesel engine to improve the volumetric efficiency, especially, in a low and transient engine speed range where much of the pollutant matters are expelled out. The volumetric efficiency is known as one of the most important factor which affects significantly engine performance, fuel economy and further emission and noise level. As the torque increase with the engine speed up, the gas flow in an exhaust pipe become pulsating and then has an effect on boost up capacity of air charging into the cylinder and expelling capacity to atmosphere simultaneously. But at a low and idling speed, the pulsation effect was not so significant. Accordingly, resonator was employed to compensate their loss. The variable induction system consists of the secondary pipe, resonator, intercooler, and torque variance were examined with extended operating conditions. In the mean time, for interpretation and well understanding for the phenomena of wave action that arising during intake and exhaust process between turbocharger and variable intake system, the concept of the combined supercharging was introduced. Some of results are depicted which deal with a pressure history during valve events of induction process. Consequently, by the governing of these phase and amplitude of pulsating wave, it enables us to estimate and evaluate for the intake system performance and also, designing stage of the system layout.

  • PDF

공침법을 이용한 PbTiO3-Polymer O-3 압전 Composites (Performance Improvement on Cycloconverter-fed Induction Motor Speed Control System)

  • Cho, Ok-Kyun;Shin, Hwi-Beom;Yuon, Myung-Joong
    • 대한전기학회논문지
    • /
    • 제36권5호
    • /
    • pp.352-359
    • /
    • 1987
  • The cycloconverter operating on a circulating current-free mode has many zero crossing points. If an exact zero crossing points are not detected, the three phase-unbalanced currents will flow in a motor. In this paper, the current feedback using a current reference wave is proposed to improve the problems of zero crossing detection, three phase-unbalanced voltages, currents, and torgue ripples. To prevent the saturation of the air gap flux and keep the torque constant, the constant voltage / hertz control with IR compensation is adopted. The PI-controller is designed using the linearized model of the cycloconverterinduction motor system. Alsi, Z-80A single board computer has been used to implement the proposed scheme which results in the performance improvement of cycloconterter-fed induction motor speed control system.

  • PDF

매트리스 컨버터를 이용한 유도전동기 구동장치를 위한 전력이론 기반의 센서리스 기법 (Sensorless Control for Induction Motor Drives Fed By a Matrix Converter Using Power Theory)

  • 이교범
    • 전기학회논문지
    • /
    • 제56권3호
    • /
    • pp.524-530
    • /
    • 2007
  • This paper presents a new and simple method for sensorless operation of matrix converter drives using a constant air-gap flux and the imaginary power flowing to the motor. To improve low-speed sensorless performance, the non-linearities of a matrix converter drive such as commutation delays, turn-on and turn-off times of switching devices, and on-state switching device voltage drop are modelled using PQR transformation and compensated using a reference power control scheme. The proposed compensation method is applied for high performance induction motor drives using a 3 kW matrix converter system. Experimental results are shown to illustrate the feasibility of the proposed strategy.