• Title/Summary/Keyword: Air induction

Search Result 372, Processing Time 0.034 seconds

Effect of Nitrogen and Carbon Dioxide on DME Homogeneous Charge Compression Ignition Engine (DME 예혼합 압축착화 엔진에서 질소와 이산화탄소의 영향)

  • Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.171-178
    • /
    • 2008
  • The combustion and exhaust emission characteristics were investigated in an DME fueled HCCI engine. Carbon dioxide, nitrogen and mixed gas, which was composed of carbon dioxide and nitrogen, were used as control parameters of combustion and exhaust emission. As the oxygen concentration in induction air, which was occurred by carbon dioxide, nitrogen and mixed gas, was reduced, the start of auto-ignition was retarded and the burn duration was extended due to obstruction of combustion and reduction of combustion temperature. Due to these fact, indicated mean effective pressure was increased and indicated combustion efficiency was decreased by carbon dioxide, nitrogen and mixed gas. In case of exhaust emission, hydrocarbon and carbon monoxide was increased by reduction of oxygen concentration in induction air. Especially, partial burning was appeared at lower than about 18% of oxygen concentration by supplying carbon dioxide. However it was overcome by intake air heating.

A Study of The Surface Dielectric Barrier Discharge Design Conditions for Generating Negative Air Ions (음이온 생성을 위한 표면 유전체장벽방전의 설계조건 연구)

  • Shin, Sang-Moon;Kim, Jung-Yoon;Kim, Jong-Soo;Choi, Jae-Ha;Choi, Won-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.114-122
    • /
    • 2014
  • This paper describes a study of the design conditions of a planar surface dielectric barrier discharge (DBD) reactors for generating negative air ions. The capacity of negative air ion generated by the surface DBD reactor is affected by the shape, area ratio and the location of the discharge and induction electrodes of it. To study the optimal design conditions of DBD reactors, the electrodes printed on the substrate of a PCB board is utilized to conduct kind of experiments: the distance of the each electrode along with the X-Y axis, the area ratio of the discharge electrode to induction electrode, and the symmetrical and asymmetrical location of two electrodes. The ion generation capacity is inverse proportional to the gap increases along with X-Y axis. And the optimum ion concentration generated by the ionizer was inspected when the electrodes area ratio was 3 and 5 times of the symmetrical and asymmetrical experimental condition respectively.

Grid faults characteristics simulation of inverter-fed induction generator (인버터 부착형 농형 유도발전기의 계통고장특성 모의)

  • Hong, Jitae;Kwon, Soonman;Kim, Chunkyung;Lee, Jongmoo;Cheon, Jongmin;Kim, Hong-Ju;Kim, Heeje
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.43.1-43.1
    • /
    • 2011
  • The detail simulation modeling of fully-fed induction generator is investigated through PC based MATLAB/Simulink environment. Generator's stator currents are controlled by indirect vector control method. In this method, generator side converter controls the maximum excitation (air gap flux) by stator d-axis current and controls generator torque by stator q-axis current. Induction generator speed is controlled by tip speed ratio (TSR) upon the wind speed variations in order to generate the maximum output power. The generator torque model is specified as a 3-blade wind turbine with rating, then, the model is simulated under normal operating condition and three different fault conditions. The matlab model designed for fully-fed induction generator based wind farm provides good performance under normal and grid fault conditions. It provides good results for different pwm techniques and fault conditions except the single-phase line to ground fault, which should be verified with real time data from wind farms.

  • PDF

The Design of Rotor Bars of Single-Phase Line-Start Permanent Magnet Motor for Improving Starting Characteristics (단상 유도동기전동기의 기동 특성 개선을 위한 회전자 바 형상 설계)

  • Lee Chul-kyu;Kwon Soon-hyo;Yang Byung-yull;Kwon Byung-il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.8
    • /
    • pp.370-376
    • /
    • 2005
  • The single-phase induction motor is simple and durable, but the efficiency is low. Therefore, electric motors like HLDC and LSPM(line-start permanent magnet motor) that use the permanent magnet have been studied. The most advantages of single-phase LSPM is having the same stator as the stator of the single-phase induction motor and permanent magnets are just inserted in the squirrel cage rotor of the single-phase induction motor. But the characteristics of single-phase LSPM synchronous motor has very complex characteristics until the synchronization and if the design is not suitable, the single-phase LSPM synchronous motor cannot be synchronized. We designed a single-phase LSPM using the same stator and winding as the conventional single-phase induction motor, but newly designed the permanent magnets considering air gap magnetic flux density. The transient characteristics of the single-phase LSPM is not good because of a magnetic breaking torque, however, it can be improved by redesigning the rotor bars. We are proposed the design method of rotor bar for the single-phase LSPM to start softly and to make synchronization easily.

Behavior Analysis of a Self Excited Induction Generator with Various Loads for a Hybrid Electric Propulsion System (하이브리드 전기추진시스템 구축을 위한 SEIG의 출력 특성 분석)

  • Yang, Joo-Ho;Choi, Gyo-Ho;Lee, Jae-Min;Jeong, Seok-Kwon
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.41-47
    • /
    • 2018
  • This paper analyzes the output characteristics of a self excited induction generator with isolated mode according to change of its speeds and loads for building a hybrid electric propulsion system in special purpose ships by using power take off. The induction generators are being considered as an alternative choice to the well-developed generators because of their lower unit cost, inherent ruggedness, operational and maintenance simplicity. However, the generator working by stand alone has a few problems that the reactive power is required to establish the air gap magnetic flux, and the induced voltage and magnetizing current fluctuate when the load is varied. In spite of its advantages, basic design data of the capacitor bank and behaviors of the output characteristics of the generator are not sufficient for the system. Based on the operating condition(speed range of main engine) of the target boat, a reduced experimental equipment system was constructed to analyze the output characteristics of the SEIG. And a suitable capacitor bank of a stand-alone generator and its output characteristics under various loads was investigated in detail through these experiments. According to the experimental result, it was confirmed that the capacitor bank should be $70{\mu}F{\sim}100{\mu}F$, and the proper SEIG induced voltage should be DC 80 V ~ 250 V in order to storage electrical energy into a battery.

Melting and draining tests on glass waste form for the immobilization of Cs, Sr, and rare-earth nuclides using a cold-crucible induction melting system

  • Choi, Jung-Hoon;Lee, Byeonggwan;Lee, Ki-Rak;Kang, Hyun Woo;Eom, Hyeon Jin;Park, Hwan-Seo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1206-1212
    • /
    • 2022
  • Cold-crucible induction melting (CCIM) technology has been intensively studied as an advanced vitrification process for the immobilization of highly radioactive waste. This technology uses high-frequency induction to melt a glass matrix and waste, while the outer surface of the crucible is water-cooled, resulting in the formation of a frozen glass layer (skull). In this study, for the fabrication of borosilicate glass waste form, CCIM operation test with 60 kg of glass per batch was conducted using surrogate wastes composed of Cs, Sr, and Nd as a representative of highly radioactive nuclides generated during spent nuclear fuel management. A 60 kg-scale glass waste form was successfully fabricated through melting and draining processes using a CCIM system, and its physicochemical properties were analyzed. In particular, to enhance the controllability and reliability of the draining process, an air-cooling drain control method that can control draining through air-cooling near drain holes was developed, and its validity for draining control was verified. The method can offer controllability on various draining processes, such as molten salt or molten metal draining processes, and can be applied to a process requiring high throughput draining.

A numerical study on the aerodynamic characteristics of a variable geometry throttle valve(VGTV) system controlling air-flow rate (유량 제어장치인 가변스로틀밸브의 기하학적 형상변화에 따른 공기역학 특성분석 연구)

  • Cho, Hyun-Sung;Kim, Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.378-383
    • /
    • 2013
  • A butterfly throttle valve has been used to control the brake power of an SI engine by controlling the mass flow-rate of intake air in the induction system. However, the valve has a serious effect on the volumetric efficiency of the engine due to the pressure resistance in the induction system. In this study, a new intake air controlling valve named "Variable Geometry Throttle Valve(VGTV)" is proposed to minimize the pressure resistance in the intake system of an SI engine. The design concept of VGTV is on the application of a venturi nozzle in the air flow path. Instead of change of the butterfly valve angle in the airflow field, the throat width of the VGTV valve is varied with the operating condition of an SI engine. In this numerical study, CFD(computational fluid dynamics) simulation technique was incorporated to have an aerodynamics performance analysis of the two air flow controlling systems; butterfly valve and VGTV and compared the results to know which system has lower pressure resistance in the air intake system. From the result, it was found that VGTV has lower pressure resistance than the butterfly valve. Especially VGTV is effective on the low and medium load operating condition of an SI engine. The averaged pressure resistance of VGTV is about 49.0% lower than the value of the conventional butterfly throttle valve.

Characteristics Analysis on the Effects of Rotor Eccentricity in Squirrel-cage Induction Motor (회전자 편심을 고려한 농형 유도전동기의 특성해석)

  • Kim, Mi-Jung;Kim, Byong-Kuk;Jo, Won-Young;Cho, Yun-Hyun;Hwang, Don-Ha;Kang, Dong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.188-190
    • /
    • 2006
  • This paper describes the effects of air gap eccentricity in induction machines. Asymmetric electro-magnetic force caused by the frictional worn bearing, rotor misalignment and unbalanced rotor etc. generates an asymmetrical operation, vibration and electro-magnetic noise. The need for detection of these rotor eccentricities has pushed the development of monitoring methods with increasing sensitivity and noise immunity. In this paper, we focus on investigating the asymmetrical operation considering of unbalanced magnetic force in squirrel-cage induction motor with 380 [V], 7.5 [kW], 4P, 1,768 [rpm]. The effects of the rotor eccentricity, magnetic force are investigated by finite element method (FEM).

  • PDF

Equivalent Circuit Composition of a Linear Induction Motor (선형유도전동기의 등가회로 구성 - LIM의 T형 등가회로 산정을 위한 구속시험 -)

  • Jang, S.M.;Lee, H.G.;Park, Y.T.;Kim, B.S.;Jeong, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.47-49
    • /
    • 1996
  • The equivalent circuit of LIM is generally composed as the same that of rotary induction motor. However it is very difficult to move the LIM at synchronous velocity for open-secondary circuit test. The resistance representing the core losses in the primary core can not be ignored because the air-gap of LIM is larger than that of rotary induction motor. In this paper, the T-type equivalent circuit of a LIM with the core loss resistance is chosen using static zero slip test and theoritical analysis.

  • PDF

Design of Brushless Synchronous Motor with an Inverter Integrated Rotor (회전자 인버터 내장형 Brushless 동기 전동기 설계)

  • Do, Sang-Hwa;Lee, Byung-Hwa;Chae, Seung-Hee;Hong, Jung-Pyo;Jung, Eun-Soo;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.939-940
    • /
    • 2011
  • This paper deals with the design of a brushless synchronous motor with an inverter integrated rotor instead of a brush and a slip ring. It is designed for 80kW output power and compared with an induction motor and a permanent magnet synchronous motor of the same specifications. Brushless synchronous motor, induction motor and permanent magnet synchronous motor have the same amount of magnet flux density at an air gap. As a result, the brushless synchronous motor can be reduced volume of motor and power losses comparing to the induction motor.

  • PDF