• 제목/요약/키워드: Air guide

검색결과 292건 처리시간 0.017초

전립선암 치료 시 Tomoimage에 기초한 Setup 오차에 관한 고찰 (Daily Setup Uncertainties and Organ Motion Based on the Tomoimages in Prostatic Radiotherapy)

  • 조정희;이상규;김세준;나수경
    • 대한방사선치료학회지
    • /
    • 제19권2호
    • /
    • pp.99-106
    • /
    • 2007
  • 목 적: 방사선치료 중 환자의 자세나 해부학적 구조상 장기의 움직임과 치료 시 환자를 조준하면서 치료부위의 변화가 다양하게 발생할 수 있다. 이와 같은 요인은 종양부위나 정상조직에 대한 선량분포에 영향을 미치게 된다. 이는 치료계획용전산 화장비에 의해 계산된 선량이 실제임상 치료 시 서로 다른 선량이 조사될 수 있다. 인체의 생리학적인 움직임과 장기 내의 움직임 등은 고정기구나 정확한 환자의 치료준비에 의해서 치료조준의 정확성을 높일 수 있다. 본 연구의 목적은 토모영상을 통해 육안적종양체적(Gross tumor volume, GTV)과 장기의 치료 간에 발생하는 차이점을 평가하고자 한다. 대상 및 방법: 본원환자로서 직장풍선을 이용하여 치료하는 전립선암 환자 3명을 대상으로 하였고, 3달 동안 영상 자료를 수집 하였다. 각 환자마다 치료횟수 26회에 대한 토모영상을 획득하였고, 총 76회의 토모영상을 수집하였다. 각각의 토모영상은 전산화단층촬영모의치료(Computed tomography simulation, CT-simulation) 시의 중심점을 이용하였고, 매 치료 시 직장풍선에 60 cc의 공기주입 후 항문 가장자리에서 6 cm 깊이에 고정하여 전립선의 움직임을 고정시킨 후 치료 전에 토모영상을 획득하였다. 토모영상은 5 mm 두께로 영상을 획득하였다. 본 연구의 분석방법으로 CT-simulation와 MVCT (Megavoltage computed tomography, MVCT)의 융합을 위하여 납 볼을 이용하여, 토모치료의 3가지 영상융합방법으로 Bone technique, bone/tissue technique, full image technique을 이용하여 치료준비(setup)의 오차를 분석하였다. 영상융합은 눈에 보이는 납 볼 기준으로 융합하고, CT-simulation 시 획득한 영상에 MVCT에서 얻어진 영상을 융합하여, 뼈와 직장풍선, GTV을 매 치료 시 각각 비교하였다. 최초 CT-simulation 시 기준점을 중심으로 평균과 표준편차는 X, Y, Z, Roll에 대하여 각각의 환자를 분석하였다. 결 과: 분석결과 각각의 방법에 위해서 직장풍선의 변화는 확연히 다르게 나타났다. 정량적으로 뼈를 이용한 영상융합 결과 X방향으로 최대 8 mm, Y방향으로 4 mm의 움직임을 보였다. 직장풍선 기준으로 영상융합 한 결과 X, Y 방향으로 6 mm, 16 mm로 분석 되었다. 한 환자의 경우 16 mm 이상의 움직임을 보였는데, 이는 직장내의 공기나 분비물에 의한 움직임으로 분석 되었다. GTV 기준분석 결과 X 방향으로 2.7$\sim$6.6 mm, 4.3$\sim$7.8 mm가 Y방향으로 움직임을 보였다. 본 연구에서 Roll에 대한 분석결과 영상융합과 분석상에서 확연한 차이점은 없었다. 분석결과 뼈 기준의 분석결과 0.37$\pm0.36^{\circ}$, GTV 기준분석 결과 0.34$\pm0.38^{\circ}$의 회전을 보였다.

  • PDF

임플랜트 식립부위 형성시 골조직의 온도변화에 관한 연구 (A STUDY ON THE TEMPERATURE CHANGES OF BONE TISSUES DURING IMPLANT SITE PREPARATION)

  • 김평일;김영수;장경수;김창회
    • 대한치과보철학회지
    • /
    • 제40권1호
    • /
    • pp.1-17
    • /
    • 2002
  • The purpose of this study is to examine the possibility of thermal injury to bone tissues during an implant site preparation under the same condition as a typical clinical practice of $Br{\aa}nemark$ implant system. All the burs for $Br{\aa}nemark$ implant system were studied except the round bur The experiments involved 880 drilling cases : 50 cases for each of the 5 steps of NP, 5 steps of RP, and 7 steps of WP, all including srew tap, and 30 cases of 2mm twist drill. For precision drilling, a precision handpiece restraining system was developed (Eungyong Machinery Co., Korea). The system kept the drill parallel to the drilling path and allowed horizontal adjustment of the drill with as little as $1{\mu}m$ increment. The thermocouple insertion hole. that is 0.9mm in diameter and 8mm in depth, was prepared 0.2mm away from the tapping bur the last drilling step. The temperatures due to countersink, pilot drill, and other drills were measured at the surface of the bone, at the depths of 4mm and 8mm respectively. Countersink drilling temperature was measured by attaching the tip of a thermocouple at the rim of the countersink. To assure temperature measurement at the desired depths, 'bent-thermocouples' with their tips of 4 and 8mm bent at $120^{\circ}$ were used. The profiles of temperature variation were recorded continuously at one second interval using a thermometer with memory function (Fluke Co. U.S.A.) and 0.7mm thermocouples (Omega Co., U.S.A.). To simulate typical clinical conditions, 35mm square samples of bovine scapular bone were utilized. The samples were approximately 20mm thick with the cortical thickness on the drilling side ranging from 1 to 2mm. A sample was placed in a container of saline solution so that its lower half is submerged into the solution and the upper half exposed to the room air, which averaged $24.9^{\circ}C$. The temperature of the saline solution was maintained at $36.5^{\circ}C$ using an electric heater (J. O Tech Co., Korea). This experimental condition was similar to that of a patient s opened mouth. The study revealed that a 2mm twist drill required greatest attention. As a guide drill, a twist drill is required to bore through a 'virgin bone,' rather than merely enlarging an already drilled hole as is the case with other drills. This typically generates greater amount of heat. Furthermore, one tends to apply a greater pressure to overcome drilling difficulty, thus producing even greater amount heat. 150 experiments were conducted for 2mm twist drill. For 140 cases, drill pressure of 750g was sufficient, and 10 cases required additional 500 or 100g of drilling pressure. In case of the former. 3 of the 140 cases produced the temperature greater than $47^{\circ}C$, the threshold temperature of degeneration of bone tissue (1983. Eriksson et al.) which is also the reference temperature in this study. In each of the 10 cases requiring extra pressure, the temperature exceeded the reference temperature. More significantly, a surge of heat was observed in each of these cases This observations led to addtional 20 drilling experiments on dense bones. For 10 of these cases, the pressure of 1,250g was applied. For the other 10, 1.750g were applied. In each of these cases, it was also observed that the temperature rose abruptly far above the thresh old temperature of $47^{\circ}C$, sometimes even to 70 or $80^{\circ}C$. It was also observed that the increased drilling pressure influenced the shortening of drilling time more than the rise of drilling temperature. This suggests the desirability of clinically reconsidering application of extra pressures to prevent possible injury to bone tissues. An analysis of these two extra pressure groups of 1,250g and 1,750g revealed that the t-statistics for reduced amount of drilling time due to extra pressure and increased peak temperature due to the same were 10.80 and 2.08 respectively suggesting that drilling time was more influenced than temperature. All the subsequent drillings after the drilling with a 2mm twist drill did not produce excessive heat, i.e. the heat generation is at the same or below the body temperature level. Some of screw tap, pilot, and countersink showed negative correlation coefficients between the generated heat and the drilling time. indicating the more the drilling time, the lower the temperature. The study also revealed that the drilling time was increased as a function of frequency of the use of the drill. Under the drilling pressure of 750g, it was revealed that the drilling time for an old twist drill that has already drilled 40 times was 4.5 times longer than a new drill The measurement was taken for the first 10 drillings of a new drill and 10 drillings of an old drill that has already been used for 40 drillings. 'Test Statistics' of small samples t-test was 3.49, confirming that the used twist drills require longer drilling time than new ones. On the other hand, it was revealed that there was no significant difference in drilling temperature between the new drill and the old twist drill. Finally, the following conclusions were reached from this study : 1 Used drilling bur causes almost no change in drilling temperature but increase in drilling time through 50 drillings under the manufacturer-recommended cooling conditions and the drilling pressure of 750g. 2. The heat that is generated through drilling mattered only in the case of 2mm twist drills, the first drill to be used in bone drilling process for all the other drills there is no significant problem. 3. If the drilling pressure is increased when a 2mm twist drill reaches a dense bone, the temperature rises abruptly even under the manufacturer-recommended cooling conditions. 4. Drilling heat was the highest at the final moment of the drilling process.