• Title/Summary/Keyword: Air gasification

Search Result 89, Processing Time 0.021 seconds

A Study on Syngas Co-Combustion Characteristics in a 0.7 MWth Water-Tube Boiler with Single Heavy Oil Burner (중유 싱글 버너 수관식 보일러에서의 합성가스 혼합연소 특성 연구)

  • Choi, Sin-Yeong;Yang, Dong-Jin;Bang, Byoung-Yeol;Yang, Won
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.5
    • /
    • pp.452-459
    • /
    • 2010
  • This study is aimed to investigate changes of combustion characteristics and heat efficiency when syngas from gasification process using low-rank fuel such as waste and/or biomass is applied partially to an industrial boiler. An experimental study on syngas co-combustion was performed in a 0.7 MW (1 ton steam/hr) water tube boiler using heavy oil as a main fuel. Three kinds of syngas were used as an alternative fuel: mixture gas of pure carbon monoxide and hydrogen, syngas of low calorific value generated from an air-blown gasification process, and syngas of high calorific value produced from an oxygen-blown gasification process. Effects of co-combustion ratio (0~20%) for each syngas on flue gas composition were investigated through syngas injection through the nozzles installed in the side wall of the boiler and measuring $O_2$, $CO_2$, CO and NOx concentrations in the flue gas. When syngas co-combustion was applied, injected syngas was observed to be burned completely and NOx concentration was decreased because nitrogen-containing-heavy oil was partially replaced by the syngas. However, heat efficiency of the boiler was observed to be decreased due to inert compounds in the syngas and the more significant decrease was found when syngas of lower calorific value was used. However, the decrease of the efficiency was under 10% of the heat replacement by syngas.

Distribution characteristics of dioxin concentration in pyrolysis-gasification-melting process facilities (생활폐기물 열분해-가스화-용융공정시설에서 다이옥신의 분포특성)

  • Son, Jihwan;Kim, Kiheon;Kang, Youngyeol;Park, Sunku
    • Analytical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.10-16
    • /
    • 2007
  • This research was designed to investigate the formations of hazardous air pollutants in the MSWs pyrolysis-gasification-melting process. In this survey, PCDDs/PCDFs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofuran) were investigated in the two facilities (A and B facilities). In A facility, the PCDDs/DFs concentrations were 0.88, 2.29, 0.16 ng I-TEQ/$m^3$ respectively on the secondary incinerator, boiler and stack. In B facility, the PCDDs/PCDFs concentrations were 0.22, 0.05 ng I-TEQ/$m^3$ respectively on the pyrolysis-gasification-melting furnace and stack. The concentrations of PCDDs/PCDFs increased due to resynthesis during cooling process in the both facilities. High concentrations of PCDDs/PCDFs isomers were founded as 2, 3, 4, 7, 8-PeCDF, 2, 3, 4, 6, 7, 8-HxCDF and 1, 2, 3, 6, 7, 8-HxCDF orderly in A facility, and 2, 3, 4, 7, 8-PeCDF, 1, 2, 3, 7, 8-PeCDD and 2, 3, 4, 6, 7, 8-HxCDF orderly in B facility.

Fundamental properties of mortar using pretreated CGS as fine aggregate (전처리에 의한 개질 CGS를 잔골재로 활용한 모르타르의 기초적 특성)

  • Kim, Su-Hoo;Beak, Sung-Jin;Lim, Gun-Su;Han, Jun-Hui;Kim, Jong;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.99-100
    • /
    • 2022
  • This study analyzed the basic characteristics of mortar using CGS modified by pretreatment. As a result of the analysis, it was found that CGS after reforming can be partially replaced with fine aggregates to solve the existing air volume reduction problem when used, and can contribute positively in terms of securing fluidity and improving strength. Therefore, it is considered necessary to verify as a functional material of CGS through concrete durability experiments as a future task.

  • PDF

Gasification of Woody Waste in a Two-Stage Fluidized Bed Varying the Upper-reactor Temperature and Equivalence Ratio (상부온도(上部溫度)와 공기비(空氣比) 변화(變化)에 따른 폐목재(廢木材)의 이단(二段) 유동층(流動層)가스화(化))

  • Mun, Tae-Young;Kim, Jin-O;Kim, Jin-Won;Kim, Joo-Sik
    • Resources Recycling
    • /
    • v.19 no.2
    • /
    • pp.45-53
    • /
    • 2010
  • During the biomass gasification, tar generation is typically accompanied, which causes many problems, such as pipe plugging and equipment fouling. In the experiments, activated carbon was applied to the upper reactor of the two-stage gasifier in order to remove the tar generated during gasification. In addition, the effects of the upper-reactor temperature and equivalence ratio on the producer gas characteristics (composition, tar content and lower heating value) were investigated. To investigate the effect of the upper reactor-temperature, experiments were performed at 743, 793, $838^{\circ}C$, respectively. To examine the influence of the equivalence ratio, a comparison experiment was carried out at a equivalence ratio of 0.17. In all experiments, tar contents in the producer gases were below $2mg/Nm^3$. The maximum LHV of the producer gas was above $10MJ/Nm^3$, which is much higher than the typical LHV($3\sim6MJ/Nm^3$) in the air gasification of biomass.

Analysis of Fundamental Properties and Durability of Concrete Using Coal Gasification Slag as a Combined Aggregate (석탄가스화 용융슬래그를 혼합잔골재로 사용한 콘크리트의 기초적 특성 및 내구성 분석)

  • Choi, Il-Kyung;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.4
    • /
    • pp.331-338
    • /
    • 2020
  • The aim of the research is to evaluate the possibility of using coal gasification slag (CGS) as a combined aggregate for concrete mixture. To achieve this goal, the fundamental properties and the durability of concrete were analyzed depending on various combining ratio of CGS into both fine aggregate with favorable gradation and relatively coarse particles. According to the results of the experiment, slump and slump flow were increased with content of CGS regardless of crushed fine aggregate with good and poor gradations while the air content was decreased. For the compressive strength of the concrete, in the case of using the crushed aggregate with good gradation, increasing CGS content decreased compressive strength of the concrete, while when the concrete used crushed aggregate with poor gradation, the compressive strength was the maximum at 50% of CGS content. As a durability assessment, drying shrinkage was decreased and carbonation resistance was improved by increasing CGS content. On the other hand, for freeze-thawing resistance, CGS influenced adverse effect on freeze-thawing resistance. Therefore, it is known that an additional air entrainer is needed to increase the freeze-thawing resistance when CGS was used as a combined aggregate for concrete.