• Title/Summary/Keyword: Air gas

Search Result 5,045, Processing Time 0.027 seconds

A Study on Characteristics of Insulation Breakdown by the Mixing Ratio of enhanced Dry Air and SF6 (개선된 Dry Air와 SF6의 혼합비에 따른 절연파괴 특성 연구)

  • Seok, Jeong-Hoo;Beak, Jong-Hyun;Lim, Dong-Young;Bae, Sungwoo;Kim, Ki-Chai;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.86-93
    • /
    • 2016
  • It is very desirable that a mixture gas possessing excellent insulation performance is suggested for insulation on increasing high voltage. This paper proposes a $SF_6$ mixture gas based on the factors including dielectric strength, environmental impact and economic feasibility of manufacture for the insulation in eco-friendly power equipment. A suitable-$SF_6$ content was determined to improve the dielectric strength in $N_2$ and Dry Air. The examination results of the factors revealed that a $SF_6$/Dry Air mixture gas possessing the $SF_6$ content was more appropriate than a $SF_6/N_2$ mixture gas to the eco-friendly power equipment. In addition to the selection of the suitable $SF_6$ mixture gas, insulation characteristics as a function of $SF_6$ content were described from electron-detachment mechanism.

Effect of Relative Humidity on Explosion Pressure for Gas Group IIB, IIA, and I (상대습도에 따른 가스 그룹 IIB, IIA, I의 폭발압력 분석)

  • Yongtae Kim;Kihyo Jung
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.1
    • /
    • pp.51-58
    • /
    • 2023
  • Determination of explosion reference pressure is important in designing and testing flameproof enclosures (Ex d). Although relative humidity affects to explosion pressure, its effect is not well investigated for the gas group IIB, IIA, and I. This study tested explosion pressure for Ethylene (8 vol.%), Propane (4.6 vol.%), and Methane (9.8 vol.%), which are the representative gas of the gas group IIB, IIA, and I, at ambient temperature and atmospheric pressure (1 atm) under different relative humidity (0% ~ 80%). Ethylene- and Propane-air mixed gases generally tended to decrease as the relative humidity increased; however, explosion pressure was largely dropped at 20% of relative humidity compared to 0% and 10% of relative humidity. On the other hand, Methane-air mixture gas showed similar pressures at 0% and 10% of relative humidity; but no explosion occurred at more than 20%. The results of this study can be used in setting a testing protocol of explosion reference pressure for designing and testing a flameproof enclosure.

A Phenomenological Review on the Damage of Hot Gas Parts caused by Explosion of Gas Turbine Cooling System (가스터빈 내부 냉각계통 발화에 의한 고온부품 손상의 현상학적 고찰)

  • Yu, Won-Ju;Lee, Seong-Hyun
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.04a
    • /
    • pp.81-95
    • /
    • 2010
  • Gas turbines generating power operate in high temperature condition and use natural gas as fuel. For that reason, there are many cases where damage is done to the hot gas parts caused by the high temperature and many accidents occur like gas explosions, then various efforts are needed to maintain the hot gas parts and prevent accidents. It is difficult to find the root causes of damage to the hot gas parts from the gas explosion caused by gas leakage through rotor cooling air line from fuel gas heat exchanger during the shut down. To prevent gas turbine from damage, removal of gas leakage inside of gas turbine is required by purging the turbine before firing, improving the fuel gas heating system and installing alarm systems for detecting gas leakage from stop valve to turbine while the gas turbine has shut down.

  • PDF

The residence time of gas in an incinerator (소각로에서의 연소가스 체류시간)

  • Kim, Sung-Joon
    • Journal of Industrial Technology
    • /
    • v.36
    • /
    • pp.3-7
    • /
    • 2016
  • The change of flue gas residence time with the location of air inlet in an incinerator is analysed. An independent numerical variable is the location of air inlet and dependant is the residence time of flue gas. The mean value of turbulence energy in a primary combustion chamber is also analysed. The flow field and the distribution of turbulence energy are investigated to evaluate their influence on the residence time of flue gas and the turbulence energy. As the position of secondary air inlet approaches to the top of primary combustion chamber, the residence time of gas and the turbulence energy become longer and larger respectively.

  • PDF

Performance Simulation of Natural Circulating Cooling System of SF6 Gas Charged Transformer (SF6 가스를 충전한 변압기의 자연순환 냉각시스템의 성능시뮬레이션)

  • Choi, Y.D.;Huh, C.S.;Kim, J.G.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.1
    • /
    • pp.54-65
    • /
    • 1994
  • Performance of naturally circulating cooling system of $SF_6$ gas charged transformer was simulated and the variations of gas flow rate, maximum coil temperature, gas temperature and cooling air temperature were investigated with respect to the height of radiator, interplates distance and heat generation rate at core. The results show that the height of radiator most significantly affects the performance of natural circulating cooling system of transformer.

  • PDF

Generating efficiency and NOx emissions of a gas engine generator fuelled with biogas (바이오가스를 이용한 가스엔진 발전기의 발전효율 및 질소산화물 배출 특성)

  • Lee, Kyung-Taek;Cha, Hyo-Seok;Chun, Kwang-Min;Song, Soon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.306-309
    • /
    • 2009
  • Concern for new and renewable energy is growing globally. Biogas is one of the alternative fuels and consists of methane and carbon dioxide. It is difficult to achieve efficient engine operation due to a lower heating value of biogas compared to that of natural gas. In order to improve generating efficiency, finding an optimum point of ignition timing and excess air ratio is important. From this fact, generating efficiency and pollutant emissions of 2300cc gas engine generator operated by biogas as functions of ignition timings and excess air ratios were investigated in this study. As a test result, the generating efficiency of the gas engine generator using biogas was 27.34 % in the condition of the BTDC of $16^{\circ}$ and the excess air ratio of 1.4.

  • PDF

A Study on Performance Degradation Analysis of Gas Turbine Combined Heat and Power Plant (가스터빈 열병합발전소 성능저하 분석에 관한 연구)

  • Kim, Hong Joo;Kim, Byeong Heon;Oh, Byeong Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.248-255
    • /
    • 2016
  • In this study, the degree of performance changes between the guaranteed performance and the performance after a certain operating start time is calculated by using the performance test of gas turbine CHP. The reason of the performance degradation will then be analysed. For some results of the CHP plant performance tests the comprehensive electric power output was 8,380 kW lower than the guaranteed performance, and the gas turbine's output was reduced to about 250 kW whenever ambient temperatures rose to $1^{\circ}C$. Also, causes of the performance degradation of gas turbines are ambient temperature rise, temperature aging and air compressor's efficiency drop.

Study on sink-mark reduction and gas venting of injection molded parts using compressed air (압축공기를 사용한 사출성형품의 싱크마크 저감 및 가스 벤팅에 관한 연구)

  • Se-Ho Lee;Ho-Sang Lee
    • Design & Manufacturing
    • /
    • v.18 no.3
    • /
    • pp.71-80
    • /
    • 2024
  • Sink marks are a common defect that occurs due to differences in shrinkage in areas with significant thickness variations in injection-molded parts. In this paper, we investigated the reduction of sink marks and the improvement of gas venting in injection molding processes using External Gas Injection (EGI). A mold was designed with considerations for EGI core pins, O-ring grooves to prevent gas leakage, and ejector-pin sealing. The sink marks were then examined through a series of experiments. When the delay time for injecting compressed air was set to 2.2 seconds, the depth of the sink marks was minimized. However, when the delay time was either too short or too long, the depth of the sink marks increased. There was almost no difference in the depth of the sink marks at discharge pressures of 30 and 50 bar of compressed air, but the sink marks were significantly reduced at a discharge pressure of 70 bar. Under the conditions of a 2.2-second delay time and a supply pressure of 70 bar, the smallest depth, 0.594 ㎛, was observed when the supply time was between 6 and 7 seconds. This represents a reduction of approximately 94% compared to the sink mark depth of 10.078 ㎛ observed with conventional injection molding. To verify the gas venting effect of compressed air injection, an experiment was conducted using non-dried PC. The silver streaks that appeared on the exterior of the molded part were completely eliminated when the air supply pressure was set to 20 bar. This indicates that by injecting compressed air into the mold cavity before injecting the resin, the appearance quality of the injection-molded part can be improved without the need to dry the resin in advance.

Measurements of Ventilation Effectiveness in an Underfloor Air-Conditioned Space Using a Tracer Gas Technique

  • Han, Hwa-Taik;Seo, S.Y.;Kim, M.H.;Kim, Young-Il
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.91-100
    • /
    • 1999
  • This paper investigates ventilation characteristics of an environmental chamber simulating an under-floor air conditioning system for isothermal and cooling supply air conditions. The tracer gas sulfur-hexafluoride (SF$F_6$) was injected into a supply duct using step-up and step-down methods. Local mean and room mean ages were calculated from the concentrations measured at internal points and at the exhaust duct. The air change efficiency of the chamber has been found to be greater in cooling conditions than in isothermal conditions. Also the room air change efficiency is not significantly affected but slightly improved by the presence of a supply diffuser.

  • PDF

Reduction of NO Emission by Two-Stage Combustion (2단 연소에 의한 NO 배출 저감에 관한 연구)

  • 유현석;최정환;오신규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.591-596
    • /
    • 1995
  • In order to investigate the reduction of NO emissions, natural gas was fueled for two-stage combustion apparatus. NO and CO emissions were described by five variables: total air ratio, primary air ratio, secondary air injection position, secondary air injection velocity, and swirl ratio. It was mainly observed that, as the primary air ratios of 0 and 0.4 NO emission decreased with increasing the secondary air injection position and secondary air injection velocity. The effect of weak swirl on NO emission was found to be insignificant.