• Title/Summary/Keyword: Air flow sensor

Search Result 143, Processing Time 0.02 seconds

Experimental Study on the Performance of Axial Flow Rotary Heat Exchanger with the Porous Polyurethane Foam Matrix (다공질 폴리우레탄 폼 매트릭스 축류 회전형 열교환기의 성능특성에 관한 실험적 연구)

  • Tae, C.S.;Park, S.D.;Cho, S.H.;Choi, Y.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.1
    • /
    • pp.44-54
    • /
    • 1993
  • This is an experimental study to identify the performance of air-to-air rotary heat exchanger with polyurethane foam matrix. The experimental apparatus including heating AHU(Air Handling Unit), cooling AHU, sensor chamber, and heat exchanger testing unit was designed and manufactured in this study. The performance of heat exchanger with porous polyurethane foam matrix was tested with variations of the density and the thickness of matrix, regulating the wind velocity and the rotational speed of matrix. The actual heat recovery effectiveness, air leakage rate, and pressure drop of heat exchanger were measured and analyzed.

  • PDF

Flow Characteristics and Drag Reduction at Different Pressures of Counterflow Air Jets in Supersonic Flow (초음속 환경에서 역분사 공기 제트의 압력 변화에 따른 유동 특성 및 항력 감소)

  • Choi, Jongin;Lee, Jaecheong;Kang, Seungwon;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.58-65
    • /
    • 2018
  • To improve the performance of high-speed vehicles, various studies have been carried out on the head of vehicles. In this study, tests are conducted on flow characteristics and drag reduction using counterflow air jets in supersonic flow. The flow is visualized by the Schlieren method using a high-speed camera, and the drag is measured using a torque sensor according to the injection pressure conditions. The results of the measurements indicate that the flow changes from unsteady state to steady state for injection pressure ratios between 1.58 and 1.70, and drag reduction is observed as the pressure of the counterflow air jets increases.

Pressure Measurement in Double Inlet Pulse Tube Refrigerator (이중 입구형 맥동관 냉동기에서의 압력 파형 측정)

  • 정제헌;남관우;정상권;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.390-396
    • /
    • 2004
  • A double-inlet pulse tube refrigerator was fabricated as a U-shape with $\Phi$19.0 mm${\times}$125 mm regenerator packed by #200 stainless steel mesh and $\Phi$12.7 mm${\times}$125 mm pulse tube. A pressure sensor was installed at the inlet of the regenerator and a differential pressure sensor was installed across the bypass. Amplitude of the pulsating pressure was independent of the opening of the orifice and the bypass valves. Helium flow through the orifice and the bypass was calculated based on the measured pressure. Energy loss through the orifice and the bypass was evaluated with the measured pressure and the calculated helium flow rate. The energy loss, which is equivalent to the refrigeration capacity at the cold end of the ideal pulse tube refrigerator, was mainly generated through the orifice. It was proportional to the opening of the orifice valve, but the real refrigerator displayed the best performance at the optimized opening of the orifice valve. This optimized performance of the tested pulse tube refrigerator can be explained by additional refrigeration losses. As an example, the shuttle heat transfer loss of the pulse tube was calculated from the measured experimental data.

An Experimental Study on Fault Detection and Diagnosis Method for a Water Chiller Using Bayes Classifier (베이즈 분류기를 이용한 수냉식 냉동기의 고장 진단 방법에 관한 실험적 연구)

  • Lee, Heung-Ju;Chang, Young-Soo;Kang, Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.508-516
    • /
    • 2008
  • Fault detection and diagnosis(FDD) system is beneficial in equipment management by providing the operator with tools which can help find out a failure of the system. An experimental study has been performed on fault detection and diagnosis method for a water chiller. Bayes classifier, which is one of classical pattern classifiers, is adopted in deciding whether fault occurred or not. Failure modes in this study include refrigerant leakage, decrease in mass flow rate of the chilled water and cooling water, and sensor error of the cooling water inlet temperature. It is possible to detect and diagnose faults in this study by adopting FDD algorithm using only four parameters(compressor outlet temperature, chilled water inlet temperature, cooling water outlet temperature and compressor power consumption). Refrigerant leakage failure is detected at 20% of refrigerant leakage. When mass flow rate of the chilled and cooling water decrease more than 8% or 12%, FDD algorithm can detect the faults. The deviation of temperature sensor over $0.6^{\circ}C$ can be detected as fault.

A Study on Indoor Air-quality Improvement System Using Actuator (선형엑츄에이터를 이용한 실내 공기질 개선 시스템에 대한 연구)

  • Seo, Do-Won;Yoon, Keun-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.183-190
    • /
    • 2021
  • This study is a study on the implementation and operation of smart air cleaning system to improve indoor air quality. Recently, the problem of indoor air quality is getting serious due to various environmental factors. In this study, to improve the problems of indoor air quality, we implement an air cleaning system using IoT sensor. In particular, we proposed a system that can measure air pollution in real time and change different air flow paths according to pollution level. Through this, we examined efficient air quality improvement, extension of filter life, and system energy reduction. In addition, the main functions of the indoor air quality improvement system were constructed and prototypes were manufactured to confirm the operability. Finally, the utility of fine dust resolution through the implementation of the indoor air quality improvement system was examined.

An On-Line Measurement of Ethanol Concentration by Membrane Gas Sensor (막가스센서에 의한 에탄올 농도의 온라인 측정)

  • 김형찬;박민선
    • KSBB Journal
    • /
    • v.10 no.2
    • /
    • pp.126-130
    • /
    • 1995
  • A membrane gas sensor was developed for the measurement of ethanol concentration during acetic acid fermentation. The fermentation broth including ethanol was permeated through the silicone membrane by synthetic air as a carrier gas and was detected by a semiconductor gas sensor. The optimum conditions of membrane gas sensor were 20m1/min of flow rate and 0.5mm of membrane thickness. In acetic acid fermentation, an on-line measurement of ethanol concentration was conducted by the proposed membrane gas sensor and then the on-line sensor signal, was compared with the result of off-line analysis by gas chromatography. As a result, a correlated response over the range of $0∼70g/\ell$ was shown between membrane gas sensor and gas chromatography and this use of membrane gas sensor was experimentally ascertained for the monitoring and control of bioprocess like acetic acid fermentation.

  • PDF

Development of High Fidelity Supersonic Flow Air Data Processing Algorithm (고 신뢰도 초고속 공기 유동 데이터 처리 알고리즘 개발)

  • Choi, Jong-Ho;Yoon, Hyun-Gull
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.2
    • /
    • pp.54-62
    • /
    • 2010
  • This paper describes the development of high fidelity air data processing algorithm which can be applied into an air data system for a high speed aerial vehicle. Unlike the previous air data system, current algorithm used several pre-determined pressure data which were obtained with computational fluid dynamic approach without using total pressures having enough sensor redundancy and fault detection ability. The verification of current algorithm was done by commercial software Matlab and Simulink.

Characterization of three-dimensional ultrasonic anemometer using phase measurement (위상측정방식을 이용한 3차원 초음파 풍향풍속계의 특성분석)

  • Park, Do-Hyun;Yeh, Yun-Hae
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.442-448
    • /
    • 2006
  • Ultrasonic anemometers using pulse envelope detection-based method are standard instruments in most meteorological studies. In this paper, a new phase measurement method is tried to achieve the enhanced resolution without changing dimensions. The measurement sensitivity, dynamic range, and measurement speed of the new instrument are 0.2 mm/s, 13.3 m/s, and 13 measurements/sec, respectively. A graphic user interface is added to show the velocity and direction of the wind with the speed of sound and temperature of the wind in the 3 dimensional space. The new anemometer could be useful for the measurement of the air speed, the flow of fluids, and even air flow inside the downtown buildings.

Flow Characteristics of a Gas-Liquid Slug Flow in Small Vertical Tubes (작은 수직관을 흐르는 기-액 슬러그 유동의 유동특성)

  • Kye, Seok-Hyun;Kim, Dong-Seon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.5
    • /
    • pp.246-254
    • /
    • 2013
  • Some characteristics of nitrogen-water slug flow were optically measured, in vertical acrylic tubes of 2, 5 and 8 mm diameter. Bubble velocity, bubble and unit cell lengths were measured, by analyzing the light intensity signals from two sets of dot laser-infrared sensor modules mounted along the transparent tubes. Optical images of the bubbles were also taken and analyzed, to measure bubble shapes and liquid film thickness. It was found that the measured bubble velocities were in good agreement with the empirical models in the literature, except for those measured under high superficial velocity condition in the 2 mm tube. Bubble length was found to be the longest in the 2 mm tube, being 4 to 5 times those of the other tubes. Liquid film was found to have developed early in the 2 mm tube, which made the blunt shape of the bubble head. Liquid film thickness in the 8 mm tube was measured at almost twice those of the other tubes.

A Method for the Measurement of Flow Rate in a Pipe Using a Microphone Array (등간격으로 배열된 마이크로폰을 이용한 관내 유량측정 방법)

  • 김용범;김양한
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.57-67
    • /
    • 2001
  • Proposed in this paper is a method of measurement of the flow rate in a pipe. The sound waves which are propagated within a pipe are characterized by that the wavenumber in the axial direction is changed according to the flow rate, and these characteristics are used in the present method of measurement of the flow rate. The amount of change in wavenumber of sound waves according to the flow rate can be obtained from the relationship among acoustic pressure signals within a pipe, which are measured by using a microphone array. The flow rate can be obtained by using the amount of change in wavenumber of sound waves and the relational equation of the flow rate. With respect to errors that can occur during the measurement of the flow rate, the types of errors and the method of correction of those errors are presented. This method of measurement of the flow rate has application limitation conditions due to the sensor interval, assumption of sound waves as plane waves, etc. The numerical simulation and experiments for measuring the flow rate of air in a pipe are performed in order to verify the applicability of this method of measurement of the flow rate. The experimental results are shown to be similar to those of the numerical simulation. And the flow rate measured is shown to be consistent with the actual value within 5% error bound.

  • PDF