• Title/Summary/Keyword: Air flow at high temperatures

Search Result 46, Processing Time 0.029 seconds

이젝터가 부착된 냉동시스템의 성능실험

  • 이원희;김윤조;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.10
    • /
    • pp.993-1001
    • /
    • 2001
  • Experimental investigation on the performance of dual-evaporator refrigeration system with an ejector has been carried out. In this study, a hydrofluorocarbon (HFC) refrigerant R134a is chosen as a working fluid. The condenser and two-evaporators are made as concentric double pipes with counter-flow type heat exchangers. Experiments were performed by changing the inlet and outlet temperatures of secondary fluids entering condenser, high-pressure evaporator and low-pressure evaporator at test conditions keeping a constant compressor speed. When the external conditions (inlet temperatures of secondary fluid entering condenser and one evaporator) are fixed, results show that coefficient of performance (COP) increases as the inlet temperature of the other evaporator rises. It is also shown that the COP decreases as the mass flaw rate ratio of suction fluid to motive fluid increases. The COP of dual-evaporator refrigeration system with an ejector is superior to that of a single-evaporator vapor compression system by 3 to 6%.

  • PDF

Effect of the Stagnation Temperature on the Normal Shock Wave

  • Zebbiche, Toufik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • When the stagnation temperature increases, the specific heat does not remain constant and start to vary with this temperature. The gas is perfect, it's state equation remains always valid, except, it was called by gas calorically imperfect or gas at high temperatures. The purpose of this work is to develop a mathematical model for a normal shock wave normal at high temperature when the stagnation temperature is taken into account, less than the dissociation of the molecules as a generalisation model of perfect for constant heat specific. A study on the error given by the perfect gas model compared to our model is presented in order to find a limit of application of the perfect gas model. The application is for air.

PILOT INJECTION OF DME FOR IGNITION OF NATURAL GAS AT DUAL FUEL ENGINE-LIKE CONDITIONS

  • MORSY M. H.;AHN D. H.;CHUNG S. H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • The ignition delay of a dual fuel system has been numerically investigated by adopting a constant volume chamber as a model problem simulating diesel engine relevant conditions. A detailed chemical kinetic mechanism, consisting of 28 species and 135 elementary reactions, of dimethyl ether (DME) with methane ($CH_{4}$) sub-mechanism has been used in conjunction with the multi-dimensional reactive flow KIVA-3V code to simulate the autoignition process. The start of ignition was defined as the moment when the maximum temperature in the combustion vessel reached to 1900 K with which a best agreement with existing experiment was achieved. Ignition delays of liquid DME injected into air at various high pressures and temperatures compared well with the existing experimental results in a combustion bomb. When a small quantity of liquid DME was injected into premixtures of $CH_{4}$/air, the ignition delay times of the dual fuel system are longer than that observed with DME only, especially at higher initial temperatures. The variation in the ignition delay between DME only and dual fuel case tend to be constant for lower initial temperatures. It was also found that the predicted values of the ignition delay in dual fuel operation are dependent on the concentration of the gaseous $CH_{4}$ in the chamber charge and less dependent on the injected mass of DME. Temperature and equivalence ratio contours of the combustion process showed that the ignition commonly starts in the boundary at which near stoichiometric mixtures could exists. Parametric studies are also conducted to show the effect of additive such as hydrogen peroxide in the ignition delay. Apart from accurate predictions of ignition delay, the coupling between multi-dimensional flow and multi-step chemistry is essential to reveal detailed features of the ignition process.

A Study on Dioxin Reduction Characteristics of Rapid Cooling Type Circulating Fluidized Bed Heat Exchanger (급속냉각형 순환유동층 열교환기의 다이옥신 저감성능 연구)

  • Park, Sang-il
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1231-1236
    • /
    • 2008
  • The flow and heat transfer performance were measured at high temperatures in CFB heat exchanger with multiple risers and downcomers. The theoretical model for predicting heat exchanger performance was developed in this study. The model predictions were compared with the measured heat transfer rates to show relatively good agreement. The maximum gas cooling rate was $20,300^{\circ}C/sec$, and the dioxin reduction rate was 68%.

  • PDF

Performance Evaluation of Heat Sink for Cooling of LED Projector (LED 프로젝터 방열용 히트싱크의 성능평가)

  • Lee, Kyoung-Yong;Choi, Young-Seok;Jeon, Dong-Soon;Kim, Seon-Chang;Son, Kwang-Eun
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1167-1171
    • /
    • 2008
  • The flow and thermal performance of the skiving and louver fin type heat sinks for the cooling system of the small LED projector were experimentally evaluated. A small fan tester based on AMCA standards was used to control and measure the air flow rate into the heat sink. Three heat blocks were used to simulate the heat and light sources(red, green and blue) of the small LED projector. We measured the pressure drop, temperatures and input power at the specific air flow rate and discussed those results. As a result, it is found that the louver fin type heat sink has higher pressure drop and lower thermal resistance than the skiving type. From the comparison of the temperature of the heat block between skiving and louver fin type, the louver fin type heat sink was found to be more suitable for cooling the high power heat source than skiving type. The thermal performance of the fan-sink(louver fin type) system was discussed with the picture taken by a thermal video.

  • PDF

Characteristics of Laminar Lifted Flame in High Temperature Coflow (고온 동축류에서 층류 화염의 부상특성)

  • Kim, Kil-Nam;Won, Sang-Hee;Cha, Min-Suk;Chung, Suk-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.2
    • /
    • pp.1-6
    • /
    • 2002
  • Characteristics of laminar lifted flames of propane highly-diluted with nitrogen have been investigated at various temperatures of coflow air. At various fuel mole fractions, the base of laminar lifted flames has the structure of tribrachial (or triple) flame. The liftoff heights are correlated well with the stoichiometric laminar burning velocity considering initial temperature at a given coflow velocity. It shows that lifted flames are stabilized on the basis of the balance mechanism between local flow velocity and the propagation speed of tribrachial flame, regardless of the temperature of coflow and fuel mole fraction. Lifted flames exist for a jet velocity even smaller than the stoichiometric laminar burning velocity, and liftoff velocity increases more rapidly than stoichiometric laminar burning velocity as coflow temperature increases. These can be attributed to the buoyancy effect due to the density difference.

  • PDF

Performance Characteristics of the Desiccant Cooling System in Various Outdoor and Load Conditions (외기조건에 따른 제습냉방시스템의 성능 특성)

  • Lee, Dae-Young;Chang, Young-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.623-628
    • /
    • 2009
  • Desiccant based air conditioning system offers a promising alternative to conventional one using vapour compression refrigeration for energy saving and greenhouse gas reduction. It is a heat driven cycle which has high potential for the use of low grade heat source such as the waste heat from the cogeneration plant or the solar thermal energy. In this study, the cooling performance of a desiccant cooling system incorporating a regenerative evaporative cooler was characterized in various operation conditions through numerical simulation. The cooling capacity and COP were evaluated at various outdoor conditions, regeneration temperatures, and supply flow rates. Based on the performance characteristics, the optimal control scheme was discussed to minimize the cooling cost at part load condition.

  • PDF

Interdecadal Changes in the Number of Days on Which Temperatures are not Higher Than -5℃ in Winter in Seoul (서울에서 겨울철 기온이 -5℃ 이하인 날 수의 십년간 변동 특성)

  • Choi, Jae-Won;Cha, Yumi;Kim, Jeoung-Yun;Park, Cheol-Hong
    • Journal of Climate Change Research
    • /
    • v.7 no.1
    • /
    • pp.49-57
    • /
    • 2016
  • In the present study, the time series of the number of days on which temperatures were not higher than $-5^{\circ}C$ in winter in Seoul was analyzed. The results showed a decreasing tendency until recently. Statistical change-point analysis was conducted to examine whether climate regime shifts existed in this time series. According to the results, the number of days on which temperatures were not higher than $-5^{\circ}C$ in winter in Seoul drastically decreased since 1988. Therefore, to find out the reason for the recent decrease in the number of days, differences between the means of large-scale environments in winder during 1988~2010 and those during 1974~1987 were analyzed. In all layers of the troposphere, anomalous anticyclones developed in regions around the Korean Peninsula and thus the Korean Peninsula was affected by westerlies or south-westerlies. This was associated with the recent a little further northward development of western North Pacific subtropical high. Therefore, environments good for warm and humid air to flow into the Korean Peninsula were formed. To examine whether relatively warm and humid air actually flowed into the Korean Peninsula recently, temperatures and specific humidity in all layers in the troposphere were analyzed and according to the results the Korean Peninsula showed warm and humid anomalies. In the analyses of sensible heat net flux and maximum temperatures at a height of 2 m that can be felt by humans, the East Asia Continent including the Korean Peninsula showed positive anomalies.

Production of Hydrogen from Methane by 3phase AC GlidArc Plasma (3상 교류 부채꼴 방전을 이용한 메탄으로부터 수소 생산)

  • Chun, Young-Nam;Kim, Seong-Cheon;Lim, Mun-Seup
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2232-2237
    • /
    • 2007
  • Steam reforming and catalytic reforming of $CH_4$ conversion to produce synthesis gas require both high temperatures and high pressure. Non-thermal plasma is considered to be a promising technology for the hydrogen rich gas production from methane. In this study, three phase AC GlidArc plasma system was employed to investigate the effects of gas composition, gas flow rate, catalyst reactor temperature and applied electric power on the $CH_4$ and $H_2$ yield and the product distribution. The studied system consisted of three electrode and it connected AC generate power system different voltages. In this study, air was used for the partial oxidation of methane. The results showed that increasing gas flow rate, catalyst reactor temperature, or electric power enhanced $CH_4$ conversion and $H_2$ concentration. The reference conditions were found at a $O_2$/C molar ratio of 0.45, a feed flow rate of 4.9 ${\ell}$/min, and input power of 1kW for the maximum conversions of $CH_4$ with a high selectivity of $H_2$ and a low reactor energy density.

  • PDF

DEVELOPMENT of CONTINUOUS GRAIN DRYER

  • Kim, Y.H.;Cho, Y.K.;Cho, K.H.;Keum, D.H.;Han, C.S.;Han, J.K.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.396-404
    • /
    • 2000
  • Post harvest processes for rice include drying, storage and processing. Drying has a great effect on the quality of the grain. The existing rice centers are with the ill equipped, especially with drying and storage facilities. The rice harvesting has bully mechanized, a large volume of rice with high moisture content are taken to the rice processing complex(RPC). Three, the need for drying and storage facilities becomes more urgent. At present the daily drying capacity of RPC can't exceed over 40~50 M/T. Therefore new technology and facilities for a high quality and main efficient drying should be introduced one such technology is the continuous flow drying system. This research, aims to test performance efficiency the mixed continuous flow grain dryer was whose daily drying capacity is 100 M/T. The results of the performance tests of the dryer are shown as follows; (1) The temperature distribution of the drying modules were measured by a temperature recorder. The fifth module showed the highest value, followed by the seventh and the third. (2) When the intake air temperature was $55^{circ}C$, the drying rates were 1.7 and 2.6%, wb/pass in the exhaust temperatures of 20 and $22^{circ}C$. And when the intake air temperature was $60^{circ}C$, the drying rates were 1.7 and 2.3%, wb/pass in the exhaust temperatures of 22 and $25^{circ}C$. (3) The average increased rate of cracked grains after the drying process was 0.7% which is below the tolerance limit (2.0%) of the continuous grain dryer.

  • PDF