• Title/Summary/Keyword: Air disturbances

Search Result 101, Processing Time 0.023 seconds

Attitude Control of a Vehicle under the Disturbances by Sliding Mode Controller with Reaction Jets

  • Son, Sung-Han;Kim, Jinsu;Park, Kang-Bak;Teruo Tsuji;Tsuyoshi Hanamoto
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.166.6-166
    • /
    • 2001
  • An attitude control of an air vehicle based on the variable structure control is proposed. For an air vehicle, minimum weight is required. Thus, it is desired to reduce the input energy. The optimal state portrait curve using time-varying sliding surface is proposed to reduce the control energy. Tracking performance of the closed loop system is guaranteed under the existence of parameter variation and external disturbances.

  • PDF

Frequency Response Characteristics of Air-Cooled Condenser in Case of Inputting Various Disturbances

  • Kim, Jae-Dol;Oh, Hoo-Kyu;Yoon, Jung-In
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.1
    • /
    • pp.14-28
    • /
    • 2000
  • The frequency response characteristics of a condenser were numerically studied for the control of refrigeration and air conditioning systems. The important parameters, such as the refrigerant flow rate, refrigerant temperature, air velocity, and air temperature at the condenser inlet, were analyzed. Superheated vapor, two phase, and subcooled liquid domain in condenser can be described by using the energy balance equation and the mass balance equation in refrigerant and tube wall, the basic equation for describing the dynamic characteristics of condenser can be derived. The transfer function for describing dynamic response of the condenser to disturbances can be obtained from using linearizations and Laplace transformations of the equation. From this transfer function, analytical investigation which affects the frequency responses of condenser has been made. Block diagrams were made based on the analytic transfer function; dynamic responses were evaluated in Bode diagrams on the frequency response. Through this study, it became possible that the information about the dynamic characteristics of air-cooled condenser is offered. The results may be used for determining the optimum design parameters in actual components and entire systems. Also, the mathematical models, frequency response may be used to help understanding, evaluate optimum design parameters, design control systems and determine on setting the best controller for the refrigeration and air-conditioning systems.

  • PDF

Active Control of Isolation Table Using $H_\infty$ Control ($H_\infty$ 제어를 이용한 방진대의 능동제어)

  • Kim, Kyu-Young;Yang, Hyun-seok;Park, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3079-3094
    • /
    • 1996
  • Recently, the high-precision vibration attenuation technology becomes the essence fo the seccessful development of high-integrated and ultra-precision industries, and is expected to continue playing a key role in the enhancement of manufacturing technology. Vibration isolation system using an air-spring is widely employed owing to its excellent isolation characteristics in a wide frequency range. It has, however, some drawbacks such as low-stiffness and low-damping features and can be easily excited by exogenous disturbances, and then vibration of table is remained for a long time. Consequently, the need for active vibration control for an air-spring vibration isolation system becomes inevitable. Furthermore, for an air-spring isolation table to be successfully employed in a variety of manufacturing sites, it should have a guaranteed robust performance not only to exogenous disturbances but also to uncertainties due to various equipments which might be put on the table. In this study, an active vibration suppression control system using H.inf. theory is designed and experiments are performed to verify its robust performance. An air-spring vibration isolation table with voice-coil-motors as its actuators is designed and built. The table is modeled as 3 degree-of-freedom system. An active control system is designed based on $H_\infty$control theory using frequency-shaped weighting functions. Analysis on its performance and frequency responce properties are done through numerical simulations. Robust characteristics of$H_\infty$ control on disturbances and model uncertainties are experimentally verified through (i) the transient response to the impact excitation of the table, (ii) the steady-state response to the harmonic excitation, and (iii) the response to the mass change of the table itself. An LQG controller is also designed and its performance is compared with the $H_\infty$ controller.

Buzz Margin Determination of Supersonic Intake (초음속 흡입구의 버즈여유 결정기법)

  • Park, Ik-Soo;Choi, Jong-Ho;Yoon, Hyun-Gull;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.132-135
    • /
    • 2011
  • A technology for buzz margin determination is suggested to obtain stable shock structure and high compression efficiency of supersonic intake. By using the shock equilibrium equation of supersonic intake, sensitivity equation of terminal shock position for free stream and back pressure is induced and disturbances are quantified through statistical approach. Numerical results show that the sensitivity of shock position for disturbances is proportional to Mach number and the back pressure is dominant for variance of terminal shock position.

  • PDF

Precise Temperature Control of Oil Coolers with Hot-gas Bypass Manner for Machine Tools Based on PI and Feedforward Control (PI와 피드포워드 제어를 이용한 공작기계용 오일쿨러의 핫가스 바이패스 방식 정밀 온도 제어)

  • Jeong, Seok-Kwon;Byun, Jong-Yeong;Kim, Sang-Ho;Yoon, Jung-In
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.111-119
    • /
    • 2011
  • Recently, the performances of speed and accuracy are enhanced in machine tools. The high speed of the machine tools usually causes harmful thermal displacements on the objects. To reduce the thermal displacements, machine tools generally adopt oil coolers with precise temperature control function. This study aims at precise control of oil outlet temperature in the oil coolers with hot-gas bypass manner based on PI control logic. The control system was designed for obtaining steady state error within ${\pm}0.1^{\circ}C$ and maximum overshoot with 0.8% even though abrupt disturbances are added to the system. We showed that the PI gains could be easily decided by numerical simulations using practical transfer function which got experiments. Also, transient characteristics could be improved significantly by reflecting the inlet temperature of an evaporator to the output of a controller feedforwardly considering periodic abrupt disturbances. Through some experiments, excellent control performances were established by the suggested control.

Active Control of Air-Spring Vibration Isolator (공기스프링 방진대의 능동제어)

  • 송진호;김규용;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1605-1617
    • /
    • 1994
  • Air-spring is widely used in vibration isolation to reduce the table vibration. When a disturbance is applied to a table, however, it starts virbrating with a low frequency, but has a large displacement due to the reacting force of air-spring. In this study, to solve the table vibration problem, an active vibration control device based on state feedback control using air-spring and proportional control valves was designed. This device can suppress the displacement of the isolation table within allowable range, even any kind of disturbances are applied to the table. Firstly, theoretical analysis of an air-spring isolator was done. Secondly, characteristics of the isolator was investigated via computer simulation and experiment. Finally, active control of air-spring isolator was tested using optimal(LQG) and fuzzy control algorithms was performed to show the effectiveness of the control schems.

Preventing Strategy of External Disturbances of Glass Furnace

  • Cho, Jin-Hyung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.1068-1071
    • /
    • 2002
  • In this study, first, we show that the furnace process which requires maintaining high temperature is effected grievously by the temperature of surrounding air. Second, an alternative which maintains the relatively constant temperature dispersion surrounding the furnace and at the same time has economical advantages will be proposed.

  • PDF

Instability and Transition of Nonparallel Bouyancy-Induced Flows Adjacent to an Ice Surface Melting in Water (얼음 벽면의 융해율을 고려한 비평행 자연대류에서 유동의 불안정성과 천이에 관한 연구)

  • Hwang, Y.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.437-450
    • /
    • 1996
  • A set of stability equations is formulated for natural convection flows adjacent to a vertical isothermal surface melting in cold pure water. It takes account of the nonparallelism of the base flows. The melting rate is regarded as a blowing velocity at the ice surface. The numerical solutions of the linear stability equations which constitute a two-point boundary value problem are accurately obtained for various values of the density extremum parameter $R=(T_m-T_{\infty})/(T_0-T_{\infty})$ in the range $0.3{\leq}R{\leq}0.6$, by using a computer code COLNEW. The blowing effects on the base flow becomes more significant as ambient temperature ($T_{\infty}$) increases to $T_{\infty}=10^{\circ}C$. The maximum decrease of heat transfer rate is about 6.4 percent. The stability results show that the melting at surface causes the critical Grashof number $G^*$ and the maximum frequency of disturbances to decrease. In comparision with the results for the conventional parallel flow model, the nonparallel flow model has a higher critical Grashof number but has lower amplification rates of disturbances than does the parallel flow model. The spatial amplification contours exhibit that the selective frequency $B_0$ of the nonparallel flow model is higher than that of the parallel flow model and that the effects of melting are rather small. The present study also indicates that the selective frequency $B_0$ can be easily predicted by the value of the frequency parameter $B^*$ at $G^*$, which comes from the neutral stability results of the nonparallel flow model.

  • PDF

Characteristics and control of intermittent flow in water distribution systems due to restricted supply (상수도관망에서 제한급수에 따른 간헐적 흐름의 특성 및 제어)

  • Yang, Kangseung;Kim, Donghong;Jung, Kwansoo;Kim, Juhwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • The water distribution system should be invariably operated on continuous pattern for 24 hours a day. Occasionally, it is not practically possible to operate for 24 hours due to water shortage or financial constraints. Therefore an intermittent water supply is unavoidable in water shortage area and developing countries. But the intermittent water supply can introduce large pressure forces and rapid fluid accelerations into a water supply network. These disturbances may result in new pipe failure, leakage and secondary contamination. This paper proposed an improvement methodology to prevent the disturbances by intermittent water supply. For the study, the hydraulic variation of intermittent flow in water distribution system was measured and analyzed in the field by comparing with simulation of hydraulic model. Installations of control valves such as, pressure reducing and sustaining and air valves were employed for pressure and flow control. The effectiveness of the methods are presented by comparing hydraulic conditions before and after introducing the proposed solutions.

Characteristics of Partially Premixed Flames in Double Concentric Burner (이중 동축류 버너에서 부분예혼합화염의 특성에 관한 연구)

  • Kwon, S.J.;Cha, M.S.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.131-138
    • /
    • 1998
  • Flame characteristics in a double concentric burner has been studied experimentally. Air is supplied through a central nozzle, methane/air premixture is supplied in a inner annular part, and coflowing shield air is supplied to minimize outside disturbances. Depending on flow rate and concentration, various flame shapes can be observed. As the flow rate difference between central air jet and annular premixed jet is varied, several distinctive flames are observed. Conditions of partially premixed flames are further investigated; nozzle attached rich premixed flame, inner lifted flame, and outer lifted flame. Using the Abel transformation of digitized images of flames, cross- sectional images of flames can be obtained, from which overall structure of flames can be identified. PLIF measurement of OR radical was also conducted. OR radicals were mainly distributed in diffusion flame region. From the difference of OR distribution between nozzle attached and lifted flames, similarity of OR distribution between tribrachial flame and lifted flames in this study are observed.

  • PDF