• Title/Summary/Keyword: Air defense systems

Search Result 160, Processing Time 0.029 seconds

Computational Study on the Application of Porous Media to Fluid Flow in Exhaust Gas Scrubbers (배기가스 세정장치내 유체 유동에 대한 다공성 매질 적용 기반의 전산해석적 연구)

  • Hong, Jin-pyo;Yoon, Sang-hwan;Yoon, Hyeon-kyu;Kim, Lae-sung;An, Jun-tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.1-10
    • /
    • 2022
  • Exhaust gases emitted from internal combustion engines contain nitrogen oxides (NOx) and sulfur oxides (SOx), which are major air pollutants causing acid rain, respiratory diseases, and photochemical smog. As a countermeasure, scrubber systems are being studied extensively. In this study, the pressure drop characteristics were analyzed by changing the exhaust gas inflow velocity using a scrubber for a 700 kW engine as a model. In addition, the fluid flow inside the scrubber and the behavioral characteristics of the droplets were studied using CFD, and the design compatibility of the cleaning device was verified. Flow analysis was performed using inertial and viscous resistances by applying porous media to the complex shape of the scrubber. The speed of the exhaust passing through the outlet nozzle from the inlet was determined through the droplet behavior analysis by spraying, and the flow characteristics for the pressure drop were studied. In addition, it was confirmed through computational analysis whether there was a stagnation section in the exhaust gas flow in the scrubber or the sprayed droplets were in good contact with the exhaust gas.

Military Logistics Consolidation Center Location Problem : Modeling and Analysis (군 통합 물류센터의 최적 위치 결정)

  • Sim, Seungbae;Jang, Jihong;Jung, Hosang;Jeong, Bongju
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.6
    • /
    • pp.587-598
    • /
    • 2013
  • In Korea military (KM), various military supplies are distributed to individual military units via three different multi-tier supply networks owned and operated by army, navy, and air force, respectively. Under the current supply networks, the chances for the occurrence of delayed supply, undersupply, and oversupply increase, and supply redundancy also can become a problem. Thus, KM is now trying to improve its current multi-tier supply networks by constructing logistics consolidation centers. Private companies operate logistics consolidation centers to effectively manage various types of inventories before delivering them to final customers. In this paper, we newly propose a mathematical model for building the optimized military supply network considering adopting the military logistics consolidation centers. Based on the real situation of KM, the proposed model was validated in terms of its feasibility, and it seems that the outcome (the location of the military logistics consolidation centers) of the proposed model can be one of the good alternatives for KM.

Optimal Design of a Coudé Mirror Assembly for a 1-m Class Ground Telescope

  • Jaehyun Lee;Hyug-Gyo Rhee;Eui Seung Son;Jeon Geon Kang;Ji-Young Jeong;Pilseong Kang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.435-442
    • /
    • 2023
  • These days, the size of a reflective telescope has been increasing for astronomical observation. An additional optical system usually assists a large ground telescope for image analysis or the compensation of air turbulence. To guide collimated light to the external optical system through a designated path, a coudé mirror is usually adopted. Including a collimator, a coudé mirror of a ground telescope is affected by gravity, depending on the telescope's pointing direction. The mirror surface is deformed by the weight of the mirror itself and its mount, which deteriorates the optical performance. In this research, we propose an optimization method for the coudé mirror assembly for a 1-m class ground telescope that minimizes the gravitational surface error (SFE). Here the mirror support positions and the sizes of the mount structure are optimized using finite element analysis and the response surface optimization method in both the horizontal and vertical directions, considering the telescope's altitude angle. Throughout the whole design process, the coefficients of the Zernike polynomials are calculated and their amplitude changes are monitored to determine the optimal design parameters. At the same time, the design budgets for the thermal SFE and the mass and size of the mount are reflected in the study.

Study on the estimation of uncertainty for the air-borne noise measurements in a naval ship (함정 내 소음 평가를 위한 불확도 추정 기법 연구)

  • Kim, Seong-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.396-402
    • /
    • 2014
  • The measurement of air-borne noise in a naval ship is a crucial element. Because the noise in a naval ship interferes with a communication between crews and finally it causes to reduce the combat power. Thus, most of newly built ships have to satisfy the criteria of air-borne noise in the stage of delivery of a naval ship. In order to evaluate success or failure of criteria, uncertainty of the measurement should be considered. This study introduces the test method for the measurement of the air-borne noise in a naval ship and is concerned with the evaluation of uncertainty. The uncertainty results which was from the measurement of air-borne noise in 7 naval ships newly built satisfy the error tolerance(2dB). Therefore, it is need to reduce the error tolerance for the reliable measurement result.

An Experimental and Numerical Study of Corona in a Cage with Sandy and Dusty Flow in High Altitude Area

  • Lv, Yukun;Ge, Zekun;Liu, Yunpeng;Zhu, Lei;Wei, Shaoke
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1726-1733
    • /
    • 2015
  • In order to study the effect of the high-altitude and dusty weather in northwest of China on the corona characteristics of transmission lines, a corona caged based experimental system with sandy and dusty flow condition is numerically investigated and designed. This system overcomes the difficulties caused by harsh environment and offers easy usage for off-site tests. The design parameters are mainly determined by the characteristics of strong sandstorm in northwest region and test requirements. By the comparison of numerical simulation of the particle diffusion in four programs with rectangular or circular air-duct, a practical technology, which introduces swirl to control the particle diffusion length, is obtained. Accordingly, the structure of round air-duct with swirl elbow in inlet and outlet of high level segment is selected as final program. Systems of control and measurement are designed at the same time. Field tuning results show that the test system could ensure the range of sandy and dusty coverage. The wind speed, sandy and dusty concentration could be controlled and meet the requirements of accuracy. The experimental system has many features, such as simple structure, easy to be assembled, disassembled, transported and operated, small space occupied.

Analysis on Causal Factors Affecting the Stress of Pilots by the Environmental Differences between Live-Virtual Simulation (Live-Virtual 시뮬레이션 환경차이에 따른 조종사 스트레스 유발요인 분석)

  • Kim, Jinju;Kim, Sungho;Seol, Hyeonju;Jee, Cheolkyu;Hong, Youngseok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.31-36
    • /
    • 2016
  • Recently, Live-Virtual-Constructive (L-V-C) integrate training system has proposed as a solution for the problems such as limitation of training areas, increase of mission complexity, rise in oil prices. In order to integrate each training system into the one effectively, we should solve the issue about stress of pilots by the environmental differences between Live and Virtual simulation which could be occurred when each system is connected together. Although it was already examined in previous study that the psychological effects on pilots was occurred by the environmental differences between actual and simulated flights, the study did not include what the causal factors affecting psychological effects are. The aim of this study is to examine which environmental factors that cause pilots' psychological effects. This study analyzed the biochemical stress hormone, cortisol to measure the pilots' psychological effects and cortisol was measured using Enzyme-linked immunoassay (EIA). A total of 40 pilots participated in the experiment to compare the differences in pilots' cortisol response among live simulation, virtual simulation, and the virtual simulation applying three environmental factors (gravity force, noise, and equipment) respectively. As a result, there were significant differences in cortisol level when applied the gravity force and equipment factors to the virtual simulation, while there was no significant difference in the case of the noise factor. The results from this study can be used as a basis for the future research on how to make L-V system by providing minimum linkage errors and design the virtual simulator that can reduce the differences in the pilots' psychological effects.

A Study on the Analysis of R&D Trends and the Development Plan of Electronic Attack System (전자공격체계 연구개발 동향 분석과 발전방안에 대한 연구)

  • Sim, Jaeseong;Park, Byoung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.469-476
    • /
    • 2021
  • An electronic attack (EA) system is an essential weapon system for performing electronic warfare missions that contain signal tracking and jamming against multiple threats using electromagnetic waves, such as air defense radars, wireless command and communication networks, and guided missiles. The combat effectiveness can be maximized, and the survivability of militarily protecting combat power can be enhanced through EA mission operations, such as disabling the functions of multiple threats. The EA system can be used as a radio frequency jamming system to respond to drone attacks on the core infrastructure, such as airports, power plants, and communication broadcasting systems, in the civilian field. This study examined the criteria for classification according to the electronic attack missions of foreign EA systems based on an aviation platform. The foreign R&D trends by those criteria were investigated. Moreover, by analyzing the R&D trends of domestic EA systems and future battlefields in the domestic security environments, this paper proposes technological development plans of EA systems suitable for the future battlefield environments compared to the foreign R&D trends.

Analysis of SEAD Mission Procedures for Manned-Unmanned Aerial Vehicles Teaming (유무인기 협업 기반의 SEAD 임무 수행절차 분석)

  • Kim, Jeong-Hun;Seo, Wonik;Choi, Keeyoung;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.678-685
    • /
    • 2019
  • Due to the changes in future war environment and the technological development of the aviation weapon system, it is required to carry out on the analysis of the Manned-Unmanned aerial vehicles Teaming(MUM-T). Conventional manned-unmanned aerial vehicles operate according to the air strategy missions and vehicles' performance. In this paper, we analyze conventional aerial vehicle's mission to derive various kinds of missions of MUM-T after analyzing the unmanned aircraft systems roadmap issued by US DoD and the air strategy of US Air Force. Next, we identify the basic operations of the vehicles to carry out the missions, select the MUM-T based Suppression of Enemy Air Defense missions(SEAD), and analyze the procedure for performing the missions step by step. In this paper, we propose a procedure of the mission in the context of physical space and timeline for the realization of the concept of MUM-T.

Instrument Flight Certification Process and Flight Test Results of Korean Utility Helicopter (한국형 기동헬기 계기비행 인증절차 및 비행시험 결과)

  • Kwon, Hyuk-Jun;Park, Jong-Hoo;Park, Jae-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.173-180
    • /
    • 2014
  • In this paper, the instrument flight certification process and flight test results of Korean Utility Helicopter (KUH) are presented. For the instrument flight certification, the suitability of installed equipments and instruments have been reviewed and verified by ground and flight tests. Next, static and dynamic stability test are conducted in accordance with FAR-29 Appendix B. The static stability is determined by the change of speed and attitude according to control inputs. The dynamic stability is evaluated by how quickly the response of the helicopter due to long and short period control inputs are decreased. The pilot workload evaluation are also carried out by simulated IMC flight tests. This paper presents the workload assessment results when some failures are occurred at cockpit instruments, engine or flight control systems as well as the normal situation. After the simulated IMC flight test is completed, actual instrument flight test are conducted in a real IMC environment according to the air traffic controls.

A Precise Trajectory Prediction Method for Target Designation Based on Cueing Data in Lower Tier Missile Defense Systems (큐잉 데이터 기반 하층방어 요격체계의 초고속 표적 탐지 방향 지정을 위한 정밀 궤적예측 기법)

  • Lee, Dong-Gwan;Cho, Kil-Seok;Shin, Jin-Hwa;Kim, Ji-Eun;Kwon, Jae-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.523-536
    • /
    • 2013
  • A recent air defense missile system is required to have a capability to intercept short-range super-high speed targets such as tactical ballistic missile(TBMs) by performing engagement control efficiently. Since flight time and distance of TBM are very short, the missile defense system should be ready to engage a TBM as soon as it takes an indication of the TBM launch. As a result, it has to predict TBM trajectory accurately with cueing information received from an early warning system, and designate search direction and volume for own radar to detect/track TBM as fast as it can, and also generate necessary engagement information. In addition, it is needed to engage TBM accurately via transmitting tracked TBM position and velocity data to the corresponding intercept missiles. In this paper, we proposed a method to estimate TBM trajectory based on the Kepler's law for the missile system to detect and track TBM using the cueing information received before the TBM arrives the apogee of the ballistic trajectory, and analyzed the bias of prediction error in terms of the transmission period of cueing data between the missile system and the early warning system.