• Title/Summary/Keyword: Air defense systems

Search Result 158, Processing Time 0.02 seconds

Optimal Interface Design between Short-Range Air Defense Missile System and Dissimilar Combat Systems (단거리 대공방어유도탄체계와 이기종 함정 전투체계간 최적의 연동 설계 기법)

  • Park, Hyeon-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.260-266
    • /
    • 2015
  • The warship is run based on the combat system which shares tactical information collected by target detection systems and navigation devices across a network, and conducts the command and control of weapons from target detection to kill assessment. The short-range air defense missile system defends a warship from anti-ship missiles, aircraft, helicopter and other threats in order to contribute to the survival of a warship and the success of missions. The short-range air defense missile system is applied to a various combat systems. In this paper, we have proposed the interface design between the short-range air defense missile and dissimilar combat systems. To employ the short-range air defense missile at dissimilar combat systems, each system is driven by independent processor, and the tasks which are performed by each system are assigned. The information created by them is exchanged through the interface, and the flow of messages is designed.

The Evolution of Drone and Air Defense Technologies: Implications for the Future Battlefield

  • Kim Seung-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.2
    • /
    • pp.286-298
    • /
    • 2024
  • The rapid advancement of drone technology has significantly altered the landscape of modern warfare, presenting both opportunities and challenges for military forces worldwide. As drones become increasingly sophisticated, capable of performing complex missions such as reconnaissance, surveillance, and precision strikes, the development of effective air defense systems has become a critical priority. This study examines the current state of drone and air defense technologies, analyzing their impact on military strategies, tactics, and the future battlefield environment. By exploring the patterns of technological evolution, the limitations of existing air defense systems, and the potential consequences of drone proliferation, this research highlights the need for adaptive, innovative approaches to counter emerging threats. The findings underscore the importance of investing in advanced detection and interception capabilities, developing comprehensive counter-drone doctrines, and fostering international cooperation to address the ethical and legal challenges posed by the military use of drones. As the competition between drone and air defense technologies continues to intensify, policymakers and military leaders must proactively engage in shaping the future of warfare to ensure national security and stability in an increasingly complex world.

Distributed Air Defense Simulation Model and its Applications (방공교전모델(DADSim) 개발 및 활용사례)

  • 최상영;김의환
    • Journal of the military operations research society of Korea
    • /
    • v.27 no.2
    • /
    • pp.134-148
    • /
    • 2001
  • In this paper, air-defense simulation model, called "DADSim", will be introduced. DADSim(Distributed Air Defense Simulation Model) was developed by Modeling&Simulation Lab of K.N.D.U.(Korea National Defence Univ) Weapon Systems Department. This model is an analysis-purpose model in the engagement-level. DADSim can simulate not only the global air-defense or Korean Peninsula but also the local air-defense or a battle field. DADSim uses the DTED(digital terrain elevation data) LeveII it for the representation of peninsula terrain characteristics. The weapon systems cooperated in the model are low/medium-range missile systems such as HAWK, NIKE, SAM. DADSim was designed in the way of object-oriented development method, implemented by C++ language. The simulation view is an event-sequenced object-orientation. For the convenience of input, output analysis, GUI(Graphic User Interface) of menu, window, dialog box, etc. are provided to the user, For the execution of DADSim, Silicon Graphic IRIX 6.3 or high version is required. DADSim can be used for the effectiveness analysis of­defence systems. Some illustrative examples will be shown in this paper.

  • PDF

Architecture of A Launch Control Unit for the Compatibility of Weapon Systems Based on Shipboard (함정 기반 다중 무장 호환 운용을 위한 발사제어기 아키텍처)

  • Shin, JinBeom;Cho, KilSeok;Yoo, MyongHwan;Kim, TaeHyon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.176-184
    • /
    • 2020
  • In this paper, we have proposed hardware and software architecture of a launch control unit for the compatibility between air defense weapon systems loaded on shipboard. Until now, there is no compatibility between weapon systems loaded in battleships of korean navy. In the case of HaeGung system recently completed the test and evaluations, although it will be deployed on several kinds of shipboards, it has no compatibility and flexibility with other air defense weapon systems. Recently it reports that a long range air defense weapon system will be carried on future korean destroyer KDDX. Because the HaeGung and a long range air defense system will be operated together in KDDX, it is necessary to provide the compatibility between two weapon systems. So we have proposed architecture to provide the compatibility of the launch control unit that controls the launching system and the missile interface unit, and the missile in each weapon systems.

The Optimal Deployment Problem of Air Defense Artillery for Missile Defense (미사일 방어를 위한 방공포대 최적 배치 문제)

  • Kim, Jae-Kwon;Seol, Hyeonju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.98-104
    • /
    • 2016
  • With the development of modern science and technology, weapon systems such as tanks, submarines, combat planes, radar are also dramatically advanced. Among these weapon systems, the ballistic missile, one of the asymmetric forces, could be considered as a very economical means to attack the core facilities of the other country in order to achieve the strategic goals of the country during the war. Because of the current ballistic missile threat from the North Korea, establishing a missile defense (MD) system becomes one of the major national defense issues. This study focused on the optimization of air defense artillery units' deployment for effective ballistic missile defense. To optimize the deployment of the units, firstly this study examined the possibility of defense, according to the presence of orbital coordinates of ballistic missiles in the limited defense range of air defense artillery units. This constraint on the defense range is originated from the characteristics of anti-ballistic missiles (ABMs) such as PATRIOT. Secondly, this study proposed the optimized mathematical model considering the total covering problem of binary integer programming, as an optimal deployment of air defense artillery units for defending every core defense facility with the least number of such units. Finally, numerical experiments were conducted to show how the suggested approach works. Assuming the current state of the Korean peninsula, the study arbitrarily set ballistic missile bases of the North Korea and core defense facilities of the South Korea. Under these conditions, numerical experiments were executed by utilizing MATLAB R2010a of the MathWorks, Inc.

Design and Integration of a Dual Redundancy Air Data System for Unmanned Air Vehicles (무인항공기 이중화 대기자료시스템 설계 및 통합 연구)

  • Won, Dae-Yeon;Yun, Seonghun;Lee, Hongju;Hong, Jin-Sung;Hwang, Sun-Yu;Lim, Heung-Sik;Kim, Taekyeum
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.639-649
    • /
    • 2020
  • Air data systems measure airspeed, pressure altitude, angle of attack and angle of sideslip. These measurements are essential for operating flight control laws to ensure safe flights. Since the loss or corruption of air data measurements is considered as catastrophic, a high level of operational reliability needs to be achieved for air data systems. In the case of unmanned air vehicles, failure of any of air data sensors is more critical due to the absence of onboard pilot decision aid. This paper presents design of a dual redundancy air data system and the integration process for an unmanned air vehicle. The proposed dual-redundant architecture is based on two independent air data probes and redundancy management by central processing in two independent flight control computers. Starting from unit testing of single air data sensor, details are provided of system level tests used to meet overall requirements. Test results from system integration demonstrate the efficiency of the proposed process.

An Optimization Model for Determining the Number of Military Cargo-plane (군용 수송기 소요 산정 최적화 모형)

  • Hee Soo Kim;Moon Gul Lee;Ho Seok Moon;Seong In Hwang
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.160-172
    • /
    • 2023
  • In contemporary global warfare, the significance and imperative of air transportation have been steadily growing. The Republic of Korea Air Force currently operates only light and medium-sized military cargo planes, but does not have a heavy one. The current air transportation capability is limited to meet various present and future air transport needs due to lack of performance such as payload, range, cruise speed and altitude. The problem of population cliffs and lack of airplane parking space must also be addressed. These problems can be solved through the introduction of heavy cargo planes. Until now, most studies on the need of heavy cargo plane and increasing air transport capability have focused on the necessity. Some of them suggested specific quantity and model but have not provided scientific evidence. In this study, the appropriate ratio of heavy cargo plane suitable for the Korea's national power was calculated using principal component analysis and cluster analysis. In addition, an optimization model was established to maximize air transport capability considering realistic constraints. Finally we analyze the results of optimization model and compare two alternatives for force structure.

3-D Optimal Evasion of Air-to-Surface Missiles against Proportionally Navigated Defense Missiles

  • Cho, Sung-Bong;Ryoo, Chang-Kyung;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.514-518
    • /
    • 2003
  • In this paper, we investigate three dimensional optimal evasive maneuver patterns for air-to-surface attack missiles against proportionally navigated anti-air defense missiles. Interception error of the defense missile can be generated by evasive maneuver of the attack missile during the time of flight for which the defense missile intercepts the attack missile. Time varying weighted sum of the inverse of these interception errors forms a performance index to be minimized. Direct parameter optimization technique using CFSQP is adopted to get the attack missile's optimal evasive maneuver patterns according to parameter changes of both the attack missile and the defense missile such as maneuver limit and time constant of autopilot approximated by the 1st order lag system. The overall shape of resultant optimal evasive maneuver to enhance the survivability of air-to-surface missiles against proportionally navigated anti-air missiles is a kind of deformed barrel roll.

  • PDF

A Development of the Operational Architecture of a Low Altitude Air Defense Automation System (저고도 방공자동화체계의 운용아키덱처 개발)

  • Son, Hyun-Sik;Kwon, Yong-Soo
    • Journal of the military operations research society of Korea
    • /
    • v.34 no.1
    • /
    • pp.31-45
    • /
    • 2008
  • This paper describes a development of the operational architecture of a low altitude air defense automation system using a systems engineering approach. The future battlefield is changing to new system of systems that command and control by the network based BM/C4I. Also, it is composed of various sensors and shooters in an single theater. Future threats may be characterized as unmanned mewing bodies that the strategic effect is great such as UAVs, cruise missiles or tactical ballistic missiles. New threats such as low altitude stealth cruise missiles may also appear. The implementation of a low altitude air defense against these future threats is required to complex and integrated approach based on systems engineering. In this view, this work established an operational scenario and derived operational requirements by identifying mission and future operational environments. It is presented the operational architecture of the low altitude air defense automation system by using the CORE 5.0.

Analysis of the Upper-Air Temperature Condition for Weapon System Operating in the Korean Peninsula (한반도 지역의 고층대기에서 운용되는 무기체계를 위한 기온 조건 분석)

  • Kim, Hyun-myung;Kang, Dong-sik;Yang, Won-seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.141-149
    • /
    • 2019
  • This study analyzed upper-air temperatures in order to make temperature conditions for weapon system operating in Korean Peninsula. One of important tasks of environmental analysis is to set-up suitable temperature conditions for successful development of weapon system. Many weapon system developers are setting air temperature conditions based on the MIL-STD-810G. However, for weapons systems that are used only in the upper-air of the Korean Peninsula, the air temperature conditions recommended by MIL-STD-810G are often not suitable. To establish the air temperature conditions for upper-air in the Korean Peninsula, the method of Percentage of Occurrence should has be built up as method of temperature analysis. Upper-air climate data of the Korea Peninsulas over the past decade is also analyzed based on this method. The study suggest upper-air temperature conditions for weapons systems that are operated only in the Korean peninsula.