• 제목/요약/키워드: Air crash

검색결과 50건 처리시간 0.02초

새로운 충돌 판별 알고리즘과 가속도 센서의 위치 (New Crash Discrimination Algorithm and Accelerometer Locations)

  • 정현용;김영학
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.182-193
    • /
    • 2000
  • Several metrics have been used in crash discrimination algorithms in order to have timely air bag deployment during all frontal crash modes. However, it is still challengine to have timely air bag deployment especially during the oblique, the pole and the underride crash mode. Therefore, in this paper a new crash discrimination algorithm was proposed, using the absolute value of the deceleration change multiplied by the velocity change as a metric, and processing the metric as a function of the velocity change. The new algorithm was applied for all frontal crash modes of a minivan and a sports utility vehicle, and it resulted in timely air bag deployment for all frontal crash modes including the oblique, the pole and the underride crash mode. Moreover, it was proposed that an accelerometer be installed at each side of the rails, rockers or pillars to assess the crash severity of each side and to deploy the frontal air bags at different time especially during an asymmetric crash such as an oblique and an offset crash. As an example, the deceleration pulses measured at the left and right B-pillar·rocker locations were processed through the new algorithm, and faster time-to-fires were obtained for the air bag at the struck side for the air bag at the other side.

  • PDF

Monte Carlo 방법을 이용한 충돌 판별 알고리즘의 신뢰성 평가 (Evaluation of the Reliability of Crash Discrimination Algorithms by using the Monte Carlo Method)

  • 김영학;정현용
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.193-203
    • /
    • 2001
  • The Monte Carlo method was used to evaluate the reliability of crash discrimination algorithms. Through the Fast Fourier Transformation, crash pulses obtained during frontal crash tests of a mini van and a sports utility vehicle were transformed to signals in the frequency domain, and the signals were divided into basic signals and changeable signals. The changeable signals were modified through random generation, and they were combined with the basic signals. Then, the combined signals were transferred back to the time domain. In this way numerous crash pulses could be generated. For the generated pulses, crash discrimination algorithms were evaluated by examining whether they did not result in air bag deployment for the pulses requiring no air bag deployment and whether they resulted in time-to-fires faster than required time-to-fires for the pulses requiring air bag deployment. The crash discrimination algorithm in which the absolute value of the deceleration change multiplied by the velocity change or the summation of the absolute value of the deceleration change was used as a metric was Proven to be highly reliable.

  • PDF

기계식 충돌 센서의 성능 해석 (A Study on the Performance of Mechanical Crash Sensors)

  • 김권희
    • 한국자동차공학회논문집
    • /
    • 제3권1호
    • /
    • pp.136-142
    • /
    • 1995
  • An analysis model is proposed for the performance prediction of typical ball and tube type mechanical crash sensors based upon mass-spring-viscous gas damping idealization. Also a construction of mechanical crash pulse generator is suggested as an experimental tool for calibration and verification of model predictions. A sensor tuning procedure for a particular set of crash pulses is suggested based upon the analysis model and the experimental tools.

  • PDF

새로운 미국 측면 신차안전도평가 결과에 대한 통계적 분석 (Statistical Review for New USNCAP Side Crash Test Results)

  • 범현균
    • 한국자동차공학회논문집
    • /
    • 제21권2호
    • /
    • pp.104-113
    • /
    • 2013
  • New USNCAP has been carried out by NHTSA including front and side crash from MY2011. In this paper, test results for USNCAP Side crash were reviewed by statistical analysis. This review focused on side crash test results to investigate the effect of changes from new USNCAP side crash test protocol among 30 passenger cars. These results were summarized as followings. Total number of 5 star vehicles on the front seat dummy (16 vehicles, 53.3%) was slightly smaller than the rear seat's (17 vehicles, 56.7%) in MDB test. For the ES-2re dummy, chest injury, ie maximum rib deflection contributed to 66% in the mean value of $P_{joint}$. Pelvis injury was highly dependent upon performance up to 87% in the SID-IIs dummy cited on the rear seat in average $P_{joint}$. For Pole test, pelvis injury made contribution to the average performance to 83%. For standard deviation, it showed the largest value in the same body region as the mean value for each dummy. Overall front seat performance showed 14 vehicles, 44.6% with 5 star vehicles less than each MDB or Pole test result. This result showed that performances in MDB test were different pattern to Pole test on driver position. Number of 5star vehicles for overall side NCAP performance are 18 passenger cars (60%). Curtain airbag and driver thorax airbag were equipped in all test vehicles. One vehicle is equipped with thorax airbag in the rear seat. Results from two side tests considered as reliability problem, ie the cause for large standard deviation in side crash test. Consequently, the countermeasure for new USNCAP side crash test is essential to design the effective side structures for side collision and to control well dummy kinematics with curtain and thorax airbag in order to reduce chest and pelvis injuries.

차량의 충돌 유형 및 속도에 따른 에어백 충돌인식 알고리듬에 관한 연구 (A Study on the Airbag Crash Recognition Algorithm for Vechcle Impact Modes and Speeds)

  • 성기안;이창식
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.259-266
    • /
    • 2000
  • Crash test data from different impact modes and threshold speeds were used to assess the effects of impact conditions on air bag electronic single point sensing (ESPS) activation requirements. The requirements are expressed in terms of the desired sensor activation time based on unbelted driver dummy kinematics. A crash discriminator pre-displacement is introduced to crash recognition algorithm to the ESPS. The new crash recognition algorithm named Velocity Energy Pre-displacement(VEPD) method is developed and the ESPS algorithm based on the VEPD technique is used to assess the ESPS system performance. It is shown that VEPD method correlates very well with desired sensor activation time and meets the activation requirement.

  • PDF

The Aspects, Reasons and Outcomes of an Unmanned Air Vehicle Crash Caused By Engine Failure

  • Cuhadar, Ismet;Dursun, Mahir
    • International Journal of Aerospace System Engineering
    • /
    • 제2권1호
    • /
    • pp.1-5
    • /
    • 2015
  • The Unmanned Air Vehicle (UAV) systems are indispensable tools of air surveillance and reconnaissance nowadays. Via this systems, hazardous end risky intelligence gathering activities are handled easily. Although they are named as "Unmanned" the UAV systems are commanded by pilots/operators. So, because of weather conditions, enemy attacks etc. as well as pilot error it is possible to face with sudden Round per Minute (RPM) drops and subsequently engine cut/stop during a mission flight at high altitudes. In this case, there are some very urgent decisions to make and rapid "emergency procedure" steps to take in a very short time before Line of Sight (LOS) is lost. The time before crash and the distance to landing air base need to be calculated, the Return Home route need to be checked and the landing/crash side need to be determined. Therefore it is a vital necessity that UAV pilots have some extra qualifications like being determined, well instructed and trained, experienced apart from operating ability. Within this scope, for an education process of a UAV pilot experience sharing and lessons learned are as important as simulators even more. By means of lessons learned it is possible to find out the reasons, mistakes and prevent the likely UAV accidents. In this study it is told about a real UAV crash, experienced of the pilot, the dos and don'ts and the difficulties. Thus it is aimed to help the people who can experience the same or similar situations in future.

User Information Collection of Weibo Network Public Opinion under Python

  • Changhua Liu;Yanlin Han
    • Journal of Information Processing Systems
    • /
    • 제19권3호
    • /
    • pp.310-322
    • /
    • 2023
  • Although the network environment is gradually improving, the virtual nature of the network is still the same fact, which has brought a great influence on the supervision of Weibo network public opinion dissemination. In order to reduce this influence, the user information of Weibo network public opinion dissemination is studied by using Python technology. Specifically, the 2019 "Ethiopian air crash" event was taken as the research subject, the relevant data were collected by using Python technology, and the data from March 10, 2019 to June 20, 2019 were constructed by using the implicit Dirichlet distribution topic model and the naive Bayes classifier. The Weibo network public opinion user identity graph model under the "Ethiopian air crash" on June 20 found that the public opinion users of ordinary netizens accounted for the highest proportion and were easily influenced by media public opinion users. This influence is not limited to ordinary netizens. Public opinion users have an influence on other types of public opinion users. That is to say, in the network public opinion space of the "Ethiopian air crash," media public opinion users play an important role in the dissemination of network public opinion information. This research can lay a foundation for the classification and identification of user identity information types under different public opinion life cycles. Future research can start from the supervision of public opinion and the type of user identity to improve the scientific management and control of user information dissemination through Weibo network public opinion.

모자형 단면 점용접부재의 축방향 압궤특성에 관한 연구(II) (A Study on the Collapse Characteristics of Hat-shaped Members with Spot Welding under Axial Compression(II))

  • 차천석;양인영
    • 한국정밀공학회지
    • /
    • 제17권5호
    • /
    • pp.195-201
    • /
    • 2000
  • The fundamental spot welded sections of automobiles (hat-shaped and double hat-shaped sections) absorb most of the energy in a front impact collision. The sections of various thickness, shape and weld width on the flange lave been tested on axial impact crush load (Mass 40kg, Velocity 7.19m/sec) using a vertical air pressure crash est device Characteristics of impact collapse have been reviewed and a structure of optimal energy absorbing capacity is suggested.

  • PDF

UAM 추락 시 인구 밀접 지역 지상 인명피해 분석 (Analysis of Human Casualties on the Ground in Urban Area due to UAM Crash)

  • 김연실;최인호
    • 한국항행학회논문지
    • /
    • 제26권5호
    • /
    • pp.281-288
    • /
    • 2022
  • 본 연구에서는 무게 약 1톤, 속도 약 100km/h에 달하는 멀티콥터 형 UAM(Urban Air Mobility)가 도심 지역에서 추락했을 때 발생할 수 있는 인명피해를 정량적으로 분석하였다. UAM 수요가 가장 많을 것으로 예상되는 서울지역의 인구밀도 및 건물 데이터 베이스를 기반으로 UAM 추락 시 충돌에 노출되는 인구를 도출하였고 멀티콥터 형 비행체가 제어 불가능한 상태에서의 무동력 추락을 고려하여 항력을 고려한 자유낙하 모델을 통해 UAM 추락 시 사고영향 반경을 계산하였다. 더불어, 사고영향 반경이 증가할 때 지상의 인명피해의 변화를 분석하였다. 최종적으로 서울지역에 대한 UAM 추락 시 지상 인명피해 맵을 생성하였고 서울의 대부분의 지역에서 UAM 추락 시 약 1~10명 내외의 인명피해가 발생할 수 있음을 확인하였다. 이를 통해 TLS (Target Level of Safety)를 만족하는 UAM의 고장률 요구사항을 분석하였다.

저고도 운용 고정익 항공기의 고장 시 추락지점 및 속도 분포 연구 (Research on The Crash Location and Speed Distribution of Low Altitude Fixed-Wing Aircraft)

  • 남홍수;박배선;이학태
    • 한국항공우주학회지
    • /
    • 제50권1호
    • /
    • pp.59-66
    • /
    • 2022
  • 도심의 교통체증 문제를 해결하기 위해 eVTOL(Electric Vertical Take-Off and Landing) 항공기를 이용한 도심항공교통(UAM) 개념이 등장하여, 많은 국내외 기간들의 연구가 진행되고 있다. 하지만 도심 위를 필연적으로 비행하게 되는 eVTOL 기체가 차세대 교통수단으로 자리 잡기 위해서는 안전성의 확립이 필수적이다. 추락 시 위험도는 항공 안전과 관련된 대표적인 요소이며, 위험도 분석을 위해서는 돌발 상황으로 인한 기체의 추락 및 충돌 지점 예측이 필요하다. 고정익 모드로 운항하는 비행체의 경우 자세 혹은 방향을 결정하는 데 조종면이 큰 역할을 차지한다. 따라서 본 연구에서는 eVTOL 기체의 추락 시 위험도를 분석하기 위해 추진 시스템이 고장 난 기체의 조종면 각도에 따른 추락 지점의 분포를 추정하는 방법을 제시한다. 여기서, 성능과 형상이 공개된 eVTOL 기체를 대상으로 분석한 데이터를 사용하였다. 또한, 초기 조건에 따른 추락 지점의 분포와 확률을 계산하여 추락할 확률이 높은 구간을 도출하였으며, 추락 순간의 속도를 계산하였다.