• Title/Summary/Keyword: Air cooling system

Search Result 1,523, Processing Time 0.023 seconds

Evaluation of Indoor Thermal Environment According to Air-Barrier Air Conditioning System in Perimeter Zone (페리미터존의 에어배리어 공조방식에 따른 실내 열환경 평가)

  • Park Byung-Yoon;Ham Heung-Don;Sohn Jang-Yeul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.370-376
    • /
    • 2005
  • For the purpose of investigating the effective removal of heating/cooling load from light-weighted building envelope, two air-conditioning systems, conventional parameter air-conditioning system and air-barrier system, are evaluated and compared by both experiment and simulation with six different cases during heating and cooling season. In addition, the characteristics of window-side building thermal load are assessed by varying supply air velocity in order to seek the optimal system operation condition. The results are as follows. 1) Air-barrier system is more effective to remove heating/cooling load at perimeter zone than conventional parameter air-conditioning system. Moreover, the better effectiveness appears during cooling season than during heating season. 2) The experiment during cooling season provides that indoor temperature of air-barrier system shows $1^{\circ}C$ less than that of the conventional system with similar outdoor air temperature profile, and indoor temperature distribution is more uniform throughout the experimented model space. It concludes that air-barrier system can achieve energy saving comparing to the conventional system. 3) The capturing efficiency of air-barrier system is 0.47 on heating season and 0.2 on cooling season with the same supply air volume. It results that the system performs effectively to remove building thermal load, moreover demonstrates high efficiency during cooling season. 4) The simulation results provide that capturing efficiency to evaluate the effective removal of building load from perimeter zone shows high value when supply air velocity is 1 m/s.

DEVELOPMENT OF NIGHT COOLING SYSTEM FOR GREENHOUSE USING COOL AIR AND WATER FROM AN ABANDONED COAL MINE

  • Whoa S. Kang;Wie S. Kang;Lee, Gwi H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.1136-1145
    • /
    • 1996
  • This study was to develop the most effective cooling system which is needed to cool greenhouse during summer night to get early blooming of strawberries. Various cooling systems were designed and constructed to utilize the cool air and water from tan abandoned coal mine. Cooling systems built for this study were an evaporative cooling system with pad, cooling system using a small or large radiator , and duct cooling system using cool are drawn from coal mine. These systems were individual tested to investigate their effects on cooling greenhouse during summer night. Also, a combined cooling system was tested with operating an evaporative cooling system, small radiator, and duct cooling system simultaneously. The results in this study showed that individual cooling systems such as evaporative cooling system, small radiator, and cooling duct had about the same effect on cooling greenhouse. The combined system had little better cooling effect than that of individual cooling syst m except the large radiator . The most effective system for cooling of greenhouse was obtained with using a large a large radiator as the heat exchanger. With operating a large radiator, temperature inside the greenhouse was dropped to about 15-16$^{\circ}C$ while outside temperature was 23-24$^{\circ}C$ during summer night.

  • PDF

Optimal Air Jet System Design for the Turning of Hardened Material (고경도재료 선삭시 최적 에어제트 냉각시스템 설계)

  • 정보구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.58-62
    • /
    • 1996
  • In case of hard turning, tool wear is acclerated by heat. So we intend to decrease tool wear by using an air-jet cooling system. Before constructing the air-jet cooling system, no chipping conditions were selected through a statistical method, so called 'Taguchi method', and then the air-jet cooling system was developed by synthesizing and analyzing the results of experimental data through Taguchi method. The air-jet cooling system actually reduced flank wear of TiN coated tool by 25%.

  • PDF

A Study on the Thermal Environmental Analysis and the Application of Radiant Floor Cooling in Apartment Building (공중주택의 열환경분석과 바닥복사냉방의 적용에 관한 연구)

  • 김용이;김광우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.6
    • /
    • pp.541-548
    • /
    • 2001
  • The objective of this study is to analyze the possibilities and considerations for the application of the radiant floor cooling system by analyzing the problems of a conventional cooling system through field tests and thermal performance simulations of the radiant floor cooling in an apartment building. The results are as follows. (1) Problems of he conventional cooling system with PAC()packaged air conditioner)'s include draft, local discomfort, and excessive electrical peak demand. (2) According to the measurement during the cooling and intermediate seasons, the floor surface temperatures which are experienced at the time of cooling with PAC\`s and during intermediate season are similar to the temperatures for radiant floor cooling. (3) The radiant floor cooling system is applicable to apartment buildings during the cooling season, especially on hot and clear days.

  • PDF

A Proposal of Hybrid Cooling System Coupled with Radiation Panel Cooling and Natural Ventilation (자연환기와 복사냉방을 병용한 하이브리드 시스템의 제안)

  • 송두삼
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.543-550
    • /
    • 2003
  • In order to saving the energy for HVAC system of buildings, utilization of wind-induced cross ventilation is thought to be promising. However, utilization of natural ventilation alone is not sufficient for maintaining the human thermal-comfort such as in hot and humid regions. A hybrid air conditioning system with a controlled natural ventilation system, or combination of natural ventilation with mechanical air conditioning is thought to overcome the deficiency of wind-driven cross ventilation and to have significant effects on energy reduction. This paper describes a concept of hybrid system and propose a new type of hybrid system using radiational cooling with wind-induced cross ventilation. Moreover, a radiational cooling system is compared with an all-air cooling system. The characteristics of the indoor environment will be examined through CFD (Computational Fluid Dynamics) simulation, which is coupled with a radiation heat transfer simulation and with HVAC control in which the PMV value for the human model in the center of the room is controlled to attain the target value.

Numerical Analysis on the Coupled Operation of Ventilation Window System and Central Cooling System (창호일체형 환기시스템 및 중앙냉방시스템 연계 운영에 대한 수치해석적 연구)

  • Park, Dong Yoon;Chang, Seongju
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.4
    • /
    • pp.385-395
    • /
    • 2015
  • This study evaluated indoor environmental characteristics in an office room equipped both with ventilation window system and central cooling system. Fresh air is supplied only by the central cooling system whereas indoor air is discharged outside through both ceiling diffuser and a ventilation window system. Numerical study is conducted by changing the volumetric flow rates of exhaust ports of each system. For estimating the performance of this coupled system, $CO_2$ concentration and Predicted Mean Vote (PMV) were calculated using Computational Fluid Dynamics (CFD) simulation. The more the ceiling diffuser exhausts indoor air, the more the $CO_2$ concentration decreases. However, when the ventilation window system exhausts more indoor air, thermal comfort level gets improved in the office room with cooling system. Therefore, when the ventilation window system is operated, the coupled operation with central cooling system should be considered for enhancing indoor air quality and thermal comfort, together.

A Study on the Operation Strategy of Radiant Floor Cooling in Apartment Buildings (공동주택에서 바닥복사냉방의 적정 운영방안에 관한 연구)

  • 조영흠;석호태;여명석;김광우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.574-583
    • /
    • 2004
  • In this study, the operation strategy of the radiant floor cooling is evaluated in terms of indoor environmental conditions and energy consumption through simulations using the TRNSYS comparing the existing cooling operation. The operation strategy during continuously operated for cooling is proposed that a representative room had additional equipments and other rooms were operated with only a radiant floor cooling system and that system and control method for cooling are varied with period while intermittently operated for cooling. Specifically, when there are no people in the room, rooms were operated by only radiant floor cooling system using cooling storage and when people are occupied, rooms were operated by dehumidification and supplementary cooling device with radiant floor cooling system. The results of this study show that proposed operation strategy can stably maintain the set room air temperature and can reduce the energy consumption compared to the existing cooling method during continuously operated for cooling. While intermittently operated for cooling, the difference of set room air temperature by proposed operation strategy does not happen, satisfying comfort standards and the radiant floor cooling can expect to supply stable electric power because of decreasing demand for peak electric power of energy consumption.

A Study on the Application of Thermoelectric Module in the Air Conditioner System Using Automotive (차량용 냉방시스템에의 열전소자 적용에 관한 연구)

  • Kim, S.H.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.32-38
    • /
    • 2008
  • The improvement of cooling ability for the air conditioner is the most efficient method of application of its system. Therefore, this study has been investigated the improvement of cooling ability for the air conditioner using automotive by attached of a thermoelectric module. According to the result of test, capacity of the thermoelectric module make temperature range from $-75^{\circ}C$ to $+300^{\circ}C$ possible to cooling and exothermic. In addtion to, the reduction effect of energy revealed and the effect of liquid hammer remained with safety by attached the thermoelectric module. It was found that the air conditioner system by attached thermoelectric module have better cooling ability than the air conditioner system of existing vehicle.

  • PDF

Effects of Control Methods of Outdoor Air Cooling System on Energy Consumption in Building (외기냉방 시스템의 제어방법이 에너지 소비량에 미치는 영향에 관한 연구)

  • Hwang, Jin-Won;Ahn, Byung-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4253-4259
    • /
    • 2015
  • In this study, the effects of various control methods of outdoor air cooling control system on control characteristics and energy consumption in building are researched by simulation. The system analysis modelling is done by using TRNSYS program package, and the control performances with existing outdoor air cooling methods are compared with the control ones without outdoor air cooling. As a result, appropriate operating temperature conditions of outdoor air cooling system according to outdoor temperature changes are required, and the outdoor air/return air dry bulb temperature comparison control method among the control methods shows best responses in energy savings.

Analysis of Energy Reduction of Free Cooling System with Regions of South Korea (지역별 프리쿨링 시스템의 에너지 절감 분석)

  • Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan;Baek, Seung-Moon;Heo, Jeong-Ho;Kim, Young-Min
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.82-88
    • /
    • 2014
  • Using low outdoor temperature, free cooling system is used in a data center or industrial air-conditioning for energy saving. Because use of IT equipment has increased in some office building recently, there is a growing trend towards using free cooing system. Free cooling system performance is influenced by outdoor temperature. Therefore the performance is different with regions. In this study, performance characteristic of free cooling system is analysed and energy reduction is compared with some regions. Selected regions are 4 cities; including Ulsan analyzed in preceding research, Seoul, ChunCheon and Daejeon. The Aspentech software HYSYS 8.0v was used to conduct the analysis of free cooling system based on temperature per hour of 4 cities in 2013, respectively. The main result is following as. Free cooing system in this study has energy saving effect when outdoor temperature below $7^{\circ}C$. Becuase temperature of Chuncheon is relatively low, using free cooling system can conserve most air-conditioning energy. Energy reduction amount of Seoul is 11%, Chuncheon is 17.5%, Deajeon is 15%, Ulsan is 14%. In case of large scale of air-conditioning, it is reasonable to use free cooling system although the system is used in Seoul.