• Title/Summary/Keyword: Air conditioning volume

Search Result 349, Processing Time 0.029 seconds

A study of single-phase liquid cooling by multiple nozzle impingement on the smooth and extended surfaces (다중노즐에 의해 분사된 평면 및 확장면의 단상액체냉각에 관한 연구)

  • 소영국;박복춘;백병준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.743-752
    • /
    • 1998
  • Experiments were performed to characterize single-phase heat transfer behavior of submerged liquid jet with multiple nozzle normally impinging on the smooth and extended surfaces. Arrays of 9 and 36 nozzles were used, with diameters of 0.5 to 2.0mm providing nozzle area ratio (AR) from 0.05 to 0.2. The square pin fin arrays were chosen as extended surfaces and the effects of geometrical parameters such as fin height, the ratio of fin width to channel width on heat transfer enhancement were examined. Single nozzle characteristics were also evaluated for comparison. The results clearly showed that heat transfer enhancement could be realized by using multiple nozzles at the constant volume flow rate. The average Nusselt number of multiple nozzle impingement on the smooth surface was correlated by the following equation : Nu/$Pr\frac{1}{3}=0.94 Re^{0.56}N^{-0.12}AR^{0.50}$The average heat transfer coefficients of multiple nozzle impingement on the extended surfaces decreased with increasing fin height and the ratio of fin width to channel width. The effectiveness of ex-tended surfaces ranged from 1.5 to 3.5 depending on the fin height, the ratio of fin width to channel width of pin fin arrays, nozzle number and nozzle area ratio.

  • PDF

Improvement of the Performance of Solar Cooling Heating Systems(I) - Dynamic Load Calculation Using TRNSYS and an Optimization of Solar Systems - (태양열에 의한 냉방 및 난방시스템의 성능향상(I) - TRNSYS에 의한 동직열부하 계산과 태양열 시스템의 최적화 -)

  • Kang, Y.T.;Kim, H.K.;Ro, S.T.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.6
    • /
    • pp.696-707
    • /
    • 1988
  • This study simulates a typical solar system using the transient simulation program TRNSYS, and calculates the maximum cooling load of the model room of $50m^2$. In this study, energy rate control method is used in calculating a maximum cooling load. On the ground of the maximum cooling load of the model room, the variables that have an effect on the solar collection performance of the solar system are made a selection. Also in this study the trend of the solar collection performance is shown as the variables change. The results show that the variables which have an effect on the collection performance are collector area, collector mass flow rate, collector slope and the volume of storage tank, and the optimal value of Ac/Vt is not constant but varies as the collector area and the collector mass flow rate. Also the results show that for cooling system the optimal value of the collector slope is latitude minus $15^{\circ}$ during the seasonal operations, and twenty percent of the maximum cooling load is saved with the aid of the solar energy.

  • PDF

Fundamental Study on Heat Transfer Enhancement Effect of Microscale Surface Wrinkles (마이크로 표면주름 형상에 따른 열전달 촉진효과 기초연구)

  • Park, Hee-Jin;Park, Sang-Hu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.9
    • /
    • pp.447-452
    • /
    • 2014
  • We evaluated heat transfer characteristics of microscale wrinkles using a CFD (computational fluid dynamics) analysis. In order to verify the heat transfer effect of wrinkles having various shapes, we introduce wrinkling processes to generate few different shapes of wrinkles such as macroscale ($200{\sim}400{\mu}m$ width), microscale ($10{\sim}30{\mu}m$ width), and hierarchical (microscale on macroscale wrinkle) wrinkles, using repetitive-dividing-volume (RDV) method for single-shape of wrinkles and connected method of UV-weakly polymerization with thermal curing for hierarchical structure of winkles. The analysis results of simplified CFD model showed that heat flux on heated plate was changed by the shape of wrinkles on the plate. The increase in heat flux of about 2.6 times was achieved in the case where hierarchical wrinkle structure was used.

An Experiment Study for Flame Spread Prevention System of Snadwich Panels (샌드위치 패널의 화재확대 방지시스템 개발을 위한 실험적 연구)

  • Shin, Hyun-Joon;In, Ki-Ho;Yoo, Yong-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.6
    • /
    • pp.307-312
    • /
    • 2015
  • The sandwich panel is commonly used domestically because it's less costly and easier to handle. But fires have frequently occurred in buildings employing sandwich panels, such as the fires in Eecheon cold storage and in Gwangju Pyungdong industrial zone. Sandwich panels with steel plates on their surface prevent fire water from penetrating to the fire source, which makes it difficult to extinguish a fire in a timely manner. Toxic gas generated from some insulation material leads to serious loss of life and property. This study is intended to develop an extinguishing system for sandwich panels, thereby reducing the fire risk. Fire water and volume were determined in the wake of the study on the structure of a sandwich panel extinguishing system, and improvement and testing of the fire characteristics of the sandwich panel. Based on such study and test, a fire model test was conducted. Consequently, the sandwich panel with extinguishing system was proven to have a reduced fire risk, compared to traditional or fire retardant panels.

A Study on the Prediction of Building Equipment Noise Generates at Machine Room (기계실에서 발생하는 설비소음의 예측에 관한 연구)

  • You, Hee-Jong;Jung, Eun-Jung;Kim, Jae-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.6
    • /
    • pp.476-484
    • /
    • 2007
  • Recently, in accordance with the buildings are becoming to large-sizes, high-stories, the large scaled facilities and equipments in machine room are quite demanding, and the generated noise volume according to this situation is on increasing. Since such noise is becoming to the object of a serious civil appeal, it is the real situation that a reduction countermeasure against the machine room equipment noise is keenly necessitated. On such viewpoint, this study has recorded, measured the noises which were generated from each individual as same as the whole equipped machines and tools, on the object of the dormitory machine rooms of the 3 colleges that haying mutually different peculiarities, then after grasp-ing their characters and acoustic powers, this research has verified its prediction possibility and the authenticity by comparison the estimated numerical value with the actually measured numerical value through the acoustic simulation. After grasping the prediction possibility in such way, by utilization of the sound absorption material in the machinery room, from the stage of design, the soundproof measures for the noise reduction at machine room could be regulated effectively, and it is also considered that such data would be utilized as the fundamental material for an establishment of the measure for sound insulation.

Numerical Analysis of Pulsating Heat Pipe Based on Separated Flow Model

  • Kim Jong-Soo;Im Yong-Bin;Bui Ngoc Hung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1790-1800
    • /
    • 2005
  • The examination on the operating mechanism of a pulsating heat pipe (PHP) using visualization revealed that the working fluid in the PHP oscillated to the axial direction by the contraction and expansion of vapor plugs. This contraction and expansion is due to the formation and extinction of bubbles in the evaporating and condensing section, respectively. In this paper, a theoretical model of PHP was presented. The theoretical model was based on the separated flow model with two liquid slugs and three vapor plugs. The results show that the diameter, surface tension and charge ratio of working fluid have significant effects on the performance of the PHP. The following conclusions were obtained. The periodic oscillations of liquid slugs and vapor plugs were obtained under specified parameters. When the hydraulic diameter of the PHP was increased to d=3mm, the frequency of oscillation decreased. By increasing the charging ratio from 40 to 60 by volume ratio, the pressure difference between the evaporating section and condensing section increased, the amplitude of oscillation reduced, and the oscillation frequency decreased. The working fluid with higher surface tension resulted in an increase in the amplitude and frequency of oscillation. Also the average temperature of vapor plugs decreased.

Analysis of the Charging and Discharging Performance of a New Wavy Cylindrical Shape Capsule (굴곡진 실린더형 캡슐 형상의 축열·방열 성능 해석)

  • Hong, Sang Woo;Lee, Yong Tae;Chung, Jae Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.7
    • /
    • pp.301-307
    • /
    • 2014
  • This paper presents a numerical study on the constrained melting of a phase change material inside various capsule containers, using water and HDPE (High Density Polyethylene) as a PCM and a capsule material, respectively. The computations are based on an iterative, finite-volume numerical procedure that incorporates a single-domain enthalpy formulation for simulation of the phase change phenomenon. Using the enthalpy method, various capsule configurations, such as a capsule from E company, an isochoric cylinder capsule, an equivalent diameter sphere capsule, and an isochoric sphere capsule, are used to investigate the effect of capsule configurations on the charging and discharging performance. A transient three-dimensional model is used for each case. The simulation results show that the capsule from E company results in a higher melting and solidification rate of the PCM, than the other capsule configurations considered in this research.

Soret effect on the convective instability in binary nanofluids (Soret 효과를 고려한 이성분 나노유체에서의 대류 불안정성 해석)

  • Kim Jake;Jung Chung Woo;Kang Yong Tae;Choi Chang Kyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.3
    • /
    • pp.256-261
    • /
    • 2005
  • The objective of the present study is to study the Soret effect of both nanoparticles and solute on the convective instabilities in binary nanofluids. A new stability criterion is obtained based on the linear stability theory. The results show that the Soret effect of solute(${\psi}_{bf}$) makes the binary nanofluids unstable significantly and the convective motion in a binary nanofluid sets in easily as the ratio of Soret coefficient of nanofluid to that of binary basefluid ${\delta}_4$ increases for ${\delta}_4$ > -1. It is also found that as an increase of the volume fraction of nanoparticles, nanofluid becomes stable but at a separation ratio of ${\psi}=-0.3$ the state of fluid changes from stable to unstable.

Optimum Design of a Pin-Fins Type Heat Sink Using the CFD and Mathematical Optimization

  • Park, Kyoung-Woo;Oh, Park-Kyoun;Lim, Hyo-Jae
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.2
    • /
    • pp.71-82
    • /
    • 2005
  • The shape of $7\times7$ pin-fins heat sink is optimized numerically to obtain the minimum pressure drop and thermal resistance. In this study, the fin height (h), fin width (w), and fan-to-heat sink distance (c) are chosen as the design variables and the pressure drop $({\Delta}P)$ and thermal resistance $(\theta_j)$ are adopted as the objective functions. To obtain the optimum design values, we used the finite volume method for calculating the objective functions, the BFGS method for solving the unconstrained non-linear optimization problem, and the weighting method for predicting the multi-objective problem. The results show that the optimum design variables for the weighting coefficient of 0.5 are as follows: W=4.653 mm, h=59.215mm, and c=2.667mm. The objective functions corresponding to the optimal design are calculated as ${\Delta}P=6.82$ Pa and $(\theta_j)=0.56K/W$. The Pareto solutions are also presented for various weighting coefficients and they will offer very useful data to design the pin-fins heat sink.

Numerical analysis of the cooling effects for the first wall of fusion reactor (핵 융합로 제1벽의 냉각성능에 관한 수치해석적 연구)

  • Jeong, I.S.;Hwang, Y.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.18-30
    • /
    • 1999
  • A heat transfer analysis for the two-dimensional (2-D) steady state using finite difference method (FDM) is performed to predict the thermal behavior of the primary first-wall (FW) system of fusion reactor under various geometric and thermo-hydraulic conditions, such as the beryllium (Be) armor thickness, pitch of cooling tube, and coolant velocity. The FW consists of authentic steel (type 316 stainless steel solution annealed) for cooling tubes, Cu for cooling tubes embedding material, and Be for a protective armor, based on the International Thermonuclear Experiment Reactor (ITER) report. The present 2-D analysis, the control volume discretized with hybrid grid (rectangular grid and polar grid) and Gauss-Seidel iteration method are adapted to solve the governing equations. In the present study, geometric and thermo-hydraulic parameters are optimized with consideration of several limitations. Consequently, it is suggested that the adequate pitch of cooling tube is 22-32mm, the beryllium armor thickness is 10-12mm, and that the coolant velocity is 4.5m/s-6m/s for $100^{\circ}C$ of inlet coolant temperature. The cooling tube should locate near beryllium armor. But, it would be better for locating the center of Cu wall, considering problems of material and manufacturing. Also, 2-D analysis neglecting the axial temperature distribution of cooling tube is appropriate, regarding the discretization error in axial direction.

  • PDF