• 제목/요약/키워드: Air conditioning volume

검색결과 349건 처리시간 0.022초

PFC 작동유체 사용 U형 히트파이프의 열전달특성 연구 (Heat Transfer Characteristics of the U-shape Heat Pipe using Working Fluid of PFC)

  • 이기우;박기호;전원표
    • 설비공학논문집
    • /
    • 제13권8호
    • /
    • pp.796-802
    • /
    • 2001
  • The purpose of the present study is to examine the heat transfer characteristics of the U-shape heat pipe for the cooling of semiconductor in subway train. Perflouro-carbon(PFC) was used as working fluid. Temperature distribution on the surface and heat transfer coefficients were investigated according to the working fluid volume percent and heating rate. The results were as follows; Optimum volumetric percent of working fluid was from 80% to 90%, and hat transfer coefficients of evaporation and condensation were as follows, respectively. $\hbar_ie=0.37\times(\frac{P_i}{P_O})$l_c}^0.3$,$\hbar_ic-4.2(\frac{\kappa_l^3p_l^2gh_fg}{\mu_lq_c_l_c}^\frac{1}{3}

  • PDF

돌출된 열원이 있는 채널에서 대류와 전도열전달을 이용한 냉각특성 (Cooling Characteristics of a Parallel Channel with Protruding Heat Sources Using Convection and Conduction Heat Transfer)

  • 손영석;신지영
    • 설비공학논문집
    • /
    • 제14권11호
    • /
    • pp.923-930
    • /
    • 2002
  • Cooling characteristics of a parallel channel with protruding heat sources using convection and conduction heat transfer are studied numerically. A two-dimensional model has been developed for numerical prediction of transient, compressible, viscous, laminar flow, and conjugate heat transfer between parallel plates with uniform block heat sources. The finite volume method is used to solve the problem. The assembly consists of two channels formed by two covers and one printed circuit board which has three uniform heat source blocks. Six different cooling methods are considered to find out the most efficient cooling method in a given geometry and heat sources. The velocity and temperature fields of cooling medium, the temperature distribution along the block surface, and the maximum temperature in each block are obtained. The results are compared to examine the cooling characteristics of the different cooling methods.

집단 기여법에 의한 냉매의 특성인자 예측 (Estimation of characteristic parameters of refrigerants by group contribution method)

  • 김영일
    • 설비공학논문집
    • /
    • 제11권1호
    • /
    • pp.125-132
    • /
    • 1999
  • Studies are being done to replace conventional refrigerants with alternatives that have low or no ozone depletion and greenhouse warming Potentials, yet possess appropriate pro perties for a refrigeration cycle. To achieve this goal, a consistent set of thermodynamic properties of the working fluid is required. A common problem with the possible alternative refrigerants is that sufficient experimental data do not exist, thus making it difficult to develp complete equations of state that can predict properties in all regions including the vapor-liquid equilibrium. One solution is the use of the generalized equation of state correlations that can predict thermodynamic properties with a minimum number of characteristic parameters. Characteristic parameters required for the generalized equation of state are, in general, critical temperature, critical pressure, critical volume and normal boiling temperature. In this study, estimation of these characteristic parameters of refrigerants by group contribution method is developed.

  • PDF

개구부를 통한 외부압력 변동에 의한 난류환기 모델링 (Modeling of Turbulent Ventilation through an Opening due to Outdoor Pressure Fluctuations)

  • 한화택;염철민
    • 설비공학논문집
    • /
    • 제20권2호
    • /
    • pp.121-127
    • /
    • 2008
  • This paper investigates the effects of outdoor pressure fluctuations on natural ventilation through an opening on a building envelope. The ventilation airflow rate depends on the magnitude and the period of the pressure fluctuations, the size of the opening relative to the space volume, and the resistance characteristics of the opening. Non-dimensional parameters have been derived, which determine indoor pressure responses due to outdoor pressure fluctuations. The flow regions are categorized into (1) synchronized region, (2) opening resistance region, and (3) transition region depending on the non-dimensional parameter derived. Pressure fluctuations and flow characteristics are investigated numerically using the 4th order Runge-Kutta method.

Ar의 녹는점에 관한 분자동역학적 고찰 (Study on the Melting Point of Ar by Molecular Dynamic Simulation)

  • 정재동
    • 설비공학논문집
    • /
    • 제19권12호
    • /
    • pp.883-888
    • /
    • 2007
  • As a starting point of investigating what molecular dynamic simulations can reveal about the nature of atomic level of heating and cooling process, argon described by the LJ potential is considered. Stepwise heating and cooling of constant rates are simulated in the NPT (constant number, pressure and temperature) ensemble. Hysteresis is found due to the superheating and supercooling. Drastic change of volume and energy is involved with phase change, but the melting point can not be obtained by simply observing the changes of these quantities. Since liquid and solid phases can co-exist at the same temperature, Gibbs free energy should be calculated to find the temperature where the Gibbs free energy of liquid is equal to that of the solid since the equilibrium state is the state of minimum Gibbs free energy. The obtained melting temperature, $T^*=0.685$, is close to that of the experiment with only 2% error.

냉방부하에 영향을 미치는 외기 환경조건의 상관관계에 관한 연구 (A Study on Correlation of Outdoor Environmental Condition about Cooling Load)

  • 이제묘
    • 설비공학논문집
    • /
    • 제24권11호
    • /
    • pp.759-766
    • /
    • 2012
  • To estimate the cooling load for the following day, outdoor temperature and humidity are needed in hourly base. But the meteorological administration forecasts only maximum and minimum temperature. New methodology is proposed for predicting hourly outdoor temperature and humidity by using the forecasted maximum and minimum temperature. The correlations for normalized outdoor temperature and specific humidity has been derived from the weather data for five years at Seoul, Daejeon and Pusan. The correlations for normalized temperature are independent of date, while the correlations for specific humidity are linearly dependent on date. The predicted results show fairly good agreement with the measured data. The prediction program is also developed for hourly outdoor dry bulb temperature, specific humidity, dew point, relative humidity, enthalpy and specific volume.

발포 금속을 사용하는 채널의 열전달 특성 실험 및 해석 (Experiment and Analysis on the Heat Transfer Characteristics of a Channel Filled with Metal Form)

  • 손영석;신지영;조영일
    • 설비공학논문집
    • /
    • 제22권7호
    • /
    • pp.448-453
    • /
    • 2010
  • Porous media containing complex fluid passage have especially large surface area per unit volume. This study is aimed to identify the heat transfer characteristics of high-porosity metal foams in a horizontal channel. Experiment is performed under various heat flux, velocity and pore density. Nusselt number decreases with higher pore density. Metal foams shows higher heat transfer coefficients than pin-fin structure with the same porosity. This is due to the more complex flow passage and larger heat transfer area based on the structure of the metal foams. The analysis on the pin-fin structure may not be suitable to the metal foam structure but should be identified extensively through further study.

파형관 튜브가 있는 순환유동층 원통다관형 열교환기 내의 유체유동 (Fluid Flow in the Fluidized Bed Shell and Tube Type Heat Exchanger with Corrugated Tubes)

  • 안수환;이병창;배성택
    • 설비공학논문집
    • /
    • 제15권5호
    • /
    • pp.406-412
    • /
    • 2003
  • An experimental study was carried on the characteristics of fluid flow and heat transfer in a fluidized bed shell-and-tube type heat exchanger with corrugated tubes. Seven different solid particles having same volume were circulated in the tubes. The effects of various parameters such as water flow rates, particle geometries and materials, and geometries of corrugated tubes on relative velocities and drag coefficients were investigated. The present work showed that the drag force coefficients of particles in the corrugated tubes were usually lower than those in the smooth tubes, meanwhile the relative velocities between particles and water in the corrugated tubes were little higher than those in the smooth tubes except the glass.

나노유체의 부력에 의한 대류 불안정성 및 자연대류 열전달 특성 해석 (Analysis of Convective Instability Induced by Buoyancy and Heat Transfer Characteristics for Natural Convetion in Nanofluids)

  • 김제익;강용태;최창균
    • 설비공학논문집
    • /
    • 제16권8호
    • /
    • pp.714-719
    • /
    • 2004
  • The objective of the present study is to investigate the convective instability driven by buoyancy and the heat transfer characteristics of nanofluids. Using the property relations of nanofluid expressed as a function of the volume fraction of nanoparticles, the ratio of nanofluid Rayleigh number to basefluid one, f is newly defined. The results show that the density and the heat capacity of nanoparticles act as a destabilizing factor. With an increase of ${\gamma}$ which is the ratio of thermal conductivity of nanoparticles to that of basefluid, the thermal instability of nanofluid decreases but the heat transfer rate increases.

열전소자와 PF Type 진동형 히트파이프를 이용한 냉.난방기에 관한 연구 (The Experimental Study on Cooling-Heating System Using Thermoelectric Module and Parallel Flow Type Oscillating Heat Pipe)

  • 김종수;임용빈;조원호
    • 설비공학논문집
    • /
    • 제16권8호
    • /
    • pp.741-747
    • /
    • 2004
  • The purpose of this study was to develop a cooler/heater using a thermoelectric module combined with a parallel flow type oscillating heat pipe with R-142b as a work ing fluid. The experiment was performed for 16 thermoelectric modules (6 A/15 V, size: 40${\times}$40${\times}$4 mm), varying design parameters of the heat pipe (inclination angle, working fluid charging ratio, etc) . Experimental results indicate that the optimum charging ratio and the inclination angle of the parallel flow type oscillating heat pipe were 30% by volume and 30%, respectively. The maximum cooler/heater capacity were 479W (COP : 0.47) and 630W (COP : 0.9), respectively.