• Title/Summary/Keyword: Air conditioning volume

Search Result 349, Processing Time 0.029 seconds

Characteristics of Fluid Flow in the Fluidized Bed Shell and Tube Type Heat Exchanger with Corrugated Tubes

  • Ahn Soo Whan;Bae Sung Taek;Kim Myoung Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.4
    • /
    • pp.198-205
    • /
    • 2004
  • An experimental study was carried on the characteristics of fluid flow and heat transfer in a fluidized bed shell-and-tube type heat exchanger with corrugated tubes. Seven different solid particles having same volume were circulated in the tubes. The effects of vari­ous parameters such as water flow rates, particle geometries and materials, and geometries of corrugated tubes on relative velocities and drag coefficients were investigated. The present work showed that the drag force coefficients of particles in the corrugated tubes were usually lower than those in the smooth tubes, meanwhile the relative velocities between particles and water in the corrugated tubes were little higher than those in the smooth tubes except the particles of glasses.

Study on the Performance of the Cascade System Using Alternative Refrigerants (대체냉매를 사용한 이원냉동 시스템의 성능에 관한 연구)

  • 박종훈;조금남
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.564-571
    • /
    • 2001
  • The present study investigated the effect of key parameters on the performance of a cascade system using R-22 and R-23 refrigerants. Experimental data for the cascade system have been compared with simulation results using thermodynamic analysis. The cascade system tested at the evaporating temperature of $-80^{\circ}C $ and the condensing temperature of$40^{\circ}C $. The key experimental parameters were the evaporating temperature of the HTC(-35, -30, -25, -20, $-15^{\circ}C $) and mass flux of the HTC(200, 250, 300kg/$m^2$s). As the evaporating temperature and the mass flux of the HTC were increased respectively, the COP and the refrigerating efficiency were increased and then decreased while the volume flow rate per unit refrigeration capacity showed the opposite trend. The maximum COP and refrigerating efficiency were obtained at the evaporating temperature of the HTC of $-25^{\circ}C $ and the mass flux of 250 kg/$m^2$s.

  • PDF

Study on fluid flow characteristics of aquarium for optimum environment (최적 양식환경을 위한 수조식 양식장내의 유동특성에 관한 연구)

  • 정효민;정한식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.108-117
    • /
    • 1998
  • This study was performed to analyze the fluid flow characteristics and the temperature distribution of the aquarium for fish breeding. In this study, the finite volume method and turbulence k-$\varepsilon$ model with the SIMPLE computational algorithm are used to study the water flow in the aquarium. The calculation parameters are the circulating flow rate and the basin depth, and the experiments were carried out for the water flow visualization This numerical analysis gives reasonable velocity distributions in good agreement with the experimental data. As the results of the three dimmentional simulations, the sectional mean velocity increased as the sectional mean temperature increases for constant basin depth, and the mean velocity increased more rapidly for small basin depth than that of large basin depth, The mean velocity and temperature can be expressed as the function of the circulating flow rates and the basin depth.

  • PDF

Numerical Analysis of Heat Transfer Characteristics in Corrugated Plate Type Heat Exchanger Channel (주름형상 판형열교환기 채녈에서의 열전달 특성 수치해석적 연구)

  • 김태용;이재용;김남진;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.588-594
    • /
    • 2001
  • The purpose of this study is to investigate the thermal and hydrodynamic characteristics of the channel in corrugated plate type heat exchangers numerically. Numerical work has been conducted using the Reynolds Stress Model(RSM) by utilizing the commercial finite-volume code, FLUENT. Based on this model, the dependence of heat transfer and friction factor on geometrical parameters have been investigated. It is found that larger corrugation angle give higher values of heat transfer coefficients and friction factors. As the reynolds number increases, the heat transfer coefficient also increases. It is also observed that the heat transfer coefficient reaches maximum while the friction factor stays relatively low at same corrugation angle. Through the analysis, it is found that the optimum corrugation angle for the heat exchanger performance exists. It is noted that the flow repulsions at the contact point of the two fluid streams make the low mixing more active for larger corrugation angle and high reynolds number.

  • PDF

A Study on Flammable Mixture Formation in a Rectangular Enclosure with Gaseous Fuel Leak from the Bottom (직사각형 밀폐공간내에 기체연료 밑면 누출시 가연성 혼합기 생성에 관한 연구)

  • Chung, N.K.;Kim, H.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.4
    • /
    • pp.249-256
    • /
    • 1993
  • Numerical method is applied to predict the time variation behavior of flammable mixture formation in a two dimensional enclosure from the beginning of gas leak. Additionally experimental method is used to consider qualitative aspects. Characteristics of flammable mixture formation such as distribution of flow and fuel mass fraction at various locations in the enclosure are determined for the following parameters: the various locations of leak at the bottom and aspect ratio of the enclosure. In the case of gas leak with small leak velocity from the bottom of enclosure gravitational force affects the formation of flammable mixture. Aspect ratio of the enclosure also affects the formation of flammable mixture. The volume of the region of recirculating flow is dominant factor affecting the formation mixture.

  • PDF

Design of an Aquifer Thermal Energy Storage System (I) : Isothermal Analysis (지하대수층을 이용한 축열시스템의 설계 (I) : 등온해석)

  • Song, Y.K.;Lee, K.S.;Lee, T.H.;Kim, Y.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.2
    • /
    • pp.102-110
    • /
    • 1993
  • An isothermal analysis was conducted to develop the design tool of an aquifer thermal energy storage system. Taejeon aquifer was chosen for the analysis, and the variation of FRE(Fluid Recovery Efficiency) with respect to the aquifer natural velocity and thermal load were investigated. The analysis results were compared with those of ATESSS(Aquifer Thermal Energy Storage System Simulator) and agreed within 2% of discrepancy. It is recommended, based on the result of this study, that the system may be suitable for a large volume of hot or chill thermal energy storage system, such as for district heating or cooling.

  • PDF

A Second-Order Analysis of VM Heat Pumps (VM열펌프의 2차해석)

  • Choi, Y.S.;Jeong, E.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.208-218
    • /
    • 1996
  • Performance of a VM heat pump is considerably affected by various losses, such as enthalpy dump, reheat loss, pumping loss, conduction loss and shuttle loss. A second-order analysis model of VM heat pumps, which allows consideration of the major losses, was presented. Actual heat transfer rates for heat exchangers were calculated from the heat transfer rates obtained by the adiabatic analysis and various losses. New effective temperatures of heat exchangers were calculated from the actual heat transfer rates and the mean heat transfer coefficients until there was no appreciable change in the effective temperatures. Effects of design parameters, such as phase angle, swept volume ratio, regenerator length and speed on heating capacity, cooling capacity and COP were shown.

  • PDF

Numerical Analysis of an Orifice Pulse Tube Refrigerator (오리피스 맥동관 냉동기의 수치적 해석)

  • Lee, K.S.;Jeong, E.S.;Choi, H.O.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.282-290
    • /
    • 1994
  • A numerical model for the analysis and design of orifice pulse tube refrigerators has been developed. Heat transfer coefficient and friction factors in the model vary with time, and the real physical properties such as thermal conductivity and viscosity were used to improve the accuracy of the model. Thermodynamic behavior of the working fluid within pulse tube refrigerators was investigated and the effect of design parameters, such as reservoir volume, orifice diameter, and NTU of regenerator, on the cooling load and COP was shown.

  • PDF

A Study on the Reactor Design of Solid-Solid-Gas Chemical Heat Pump System (고체-고체-기체 화학 열펌프 시스템의 반응기 설계에 관한 연구)

  • Kim, S.J.;Lee, T.H.;Neveu, P.;Choi, H.K.;Lee, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.406-416
    • /
    • 1994
  • In this study the reactor design procedure and method of solid-solid-gas chemical heat pump system using STELF technology were investigated. For manufacturing IMPEX block which is the kernel of reactor, proper salt pair should be selected, and equilibrium temperature drop and COP should be examined for selected salt pair. Moreover, apparent density, residual porosity, and graphite ratio should be calculated to give minimum block volume and mass, and maximum energy density without causing heat and mass transfer problems. Since heat exchange area can be changed with operating condition, reactor diameter, length, and stainless steel thickness should be decided for desired specifications. These procedure and method were applied to the case study of 6kW cold production and 8 hours storage capacity reactor.

  • PDF

Heat Transfer Performance of Plate Type Absorber with Surfactant

  • Yoon, Jung-In;M. M. A. Sarker;Moon, Choon-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.243-251
    • /
    • 2004
  • Absorption chiller/heater can utilize the unused energy of the daily life waste heat, the industry waste heat. the solar energy and the earth energy. These can contribute to energy savings. But the absorption chiller/heater has a demerit that the size of absorption chiller/heater is larger than that of the vapor compression type based on same capacity. In this study. the experimental apparatus of an absorber is manufactured as a plate. which is newly applied in an absorber. The experimental apparatus is composed of a plate type absorber. which can increase the heat exchange area per unit volume and thus facilitating to deeply investigate more detail features instead of that done by the existing type. i.e.. horizontal tube bundle type. The characteristics of heat transfer and refrigeration capacity are studied experimentally. The absorption enhancement by using surfactant is closely examined through the experiment and comparative figures are presented in quantitative and qualitative analysis.