• Title/Summary/Keyword: Air conditioning unit

Search Result 377, Processing Time 0.026 seconds

An Experimental Study on Thermal Storage Performance of an Air Conditioning System with Slab Thermal Storage (슬래브축열 공조시스템의 축열성능에 관한 실험적 연구)

  • Jung Jae-Hoon;Shin Young-Gy
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.427-435
    • /
    • 2005
  • This paper investigates the thermal storage performance of the office building which has adopted an air conditioning system with its slab structure as a regenerator. Four cases of the thermal storage performance experiment were conducted. Room air temperatures, floor slab temperatures, temperatures around the air conditioning unit were logged and analyzed. The load handling capacity of the air conditioning unit and the amount of heat stored in the slab were decided from those experiments. Several efficiencies were investigated to evaluate the performance of the thermal storage. The results concluded that the slab as a regenerator is very effective in cutting down peak loads of the office building.

Fault Detection and Diagnosis of an Air Handling Unit Based on Rule Bases (룰 베이스를 이용한 공조기의 고장검출 및 진단)

  • 한도영;주명재
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.7
    • /
    • pp.552-559
    • /
    • 2002
  • The fault detection and diagnosis (FDD) technology may be applied in order to decrease the energy consumption and the maintenance cost of the air conditioning system. In this study, rule bases and curve fitting models were used to detect faults in an air handling unit. Gradually progressed faults, such as the fan speed degradation, the coil water leakage, the humidifier nozzle clogging, the sensor degradation and the damper stoppage, were applied to the developed FBD system. Simulation results show good detections and diagnoses of these faults. Therefore, this method may be effectively used for the fault detection and diagnosis of the air handling unit.

Study on Improvement of Air Conditioning Units for Anti Aircraft Gun Wheeled Vehicle (차륜형 대공포 냉방장치 성능개선 연구)

  • Jeon, Ki-Hyun;Lee, Dong-Hui;Lee, Boo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1099-1103
    • /
    • 2013
  • A combat vehicle needs to have an air-conditioning unit. Accordingly, new combat systems have tended to apply an integrated heating, cooling, and ventilating system. The air conditioning unit used depends on the combat vehicle's purpose of use. In this study, we studied an air-conditioning unit for an armored combat vehicle as a special use and military specification and tried to improve the air-conditioning unit's performance.

Evaluation of energy efficiency ratio in the mixed air conditioner system (혼합 공조 시스템의 EER(A) 평가)

  • 김병순;이승홍
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.542-548
    • /
    • 1999
  • Instead of testing split air conditioners, an empirically based calculation procedure may be used to estimate the Energy Efficiency Ratio at ARI A test conditions. Typically, the system involving the indoor unit well sold and the given outdoor unit is called the matched system. All other systems involving a given outdoor unit and other indoor units are called the mixed systems. To estimate the EER(A) for the mixed systems, EER(A) for the matched system must be known, Generally, the EER(A) for the matched system is known. This procedure relies on independent measurements and calculations made on an outdoor unit in conjunction with a matched indoor and a mixed indoor coil. A heat pump simulation model was used to quantify the effects of individual system components on the system performance. The procedure is applicable to all air-conditioning units having rated cooling capacities less than 19,000W and charged with refrigerant 22.

  • PDF

An Analysis of the Performance of a Combined Expander-Compressor Unit for a CO2 Automotive Air Conditioning Cycle (차량용 CO2 에어컨 사이클 성능 향상을 위한 일체형 팽창기-압축기 성능 해석)

  • Choi, Jae Woong;Lim, Jeong Taek;Kim, Hyun Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.3
    • /
    • pp.107-115
    • /
    • 2018
  • A design combining the use of a compressor and expander was introduced in order to improve the cycle performance of a $CO_2$ automotive air conditioning system. Both the compressor and expander used were of rotary vane type and were designed to share a common shaft in a housing. Numerical simulation was carried out to evaluate the merit of the combined unit. In a typical automotive air conditioning operating conditions, the COP of the system was improved by 8.7% by the application of the combined unit. The compressor input was reduced by 5.2% through use of the expander output. In addition, about 3.06% increase in the cooling capacity was obtained through isentropic expansion in the expander. Our study noted that, as the pressure difference between the gas cooler and the evaporator becomes larger, the COP of the system improved increases unless the mass flow rate in the expander exceeds that in the compressor.

Study on the Personal Air-Conditioning System Considering Human Thermal Adaptation (인간의 열적 적응성을 고려한 퍼스널 공조시스템의 개발)

  • 송두삼
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.524-532
    • /
    • 2003
  • In this paper, a personal air-conditioning system considering the human thermal adaptability is analyzed. Although the conventional personal air-conditioner was proofed to be satisfactory in providing for the thermal comfort, it is being questioned on the term of its energy efficiency. Therefore, it is important and urgent to develop new types of personal air-conditioning system with sustainable control strategy that can ensure energy saving and thermal comfort simultaneously. In this study, we first examined the problems of the conventional personal air-conditioning system with field interview and laboratory experiment in terms of usage, management and thermal comfort, and proposed the energy-saving personal air-conditioning system considering the human thermal adaptation. Then a laboratory experiment was performed to analyze the characteristics of the human thermal comfort under severe indoor thermal conditions, which were controlled using a new personal air-conditioning unit designed according to the proposal. The results help to illustrate the alleviation effect of the new personal air-conditioning system, and indicate that the thermal alleviation time is useful to maintain the thermal comfort with efficient usage of energy.

Study on Improvement in Cooled Air Defense Gun System Including Closed Drum Basket (비개방형 포탑드럼바스켓을 가진 대공포체계의 냉방장치개선 연구)

  • Hwang, Boo Il;Lee, Dong Hui;Kim, Chi Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.109-113
    • /
    • 2015
  • Combat vehicles need an air-conditioning unit, although new combat systems tend to use an integrated system for heating, cooling, and ventilating. The specifications of an air-conditioning unit depend on the combat vehicle's purpose. It is difficult to send cooling air from the air-conditioning unit to a gun turret through the drum basket because the gun turret rotates and consists of a closed anti-aircraft shell magazine. In this study, we considered an air-conditioning unit for armored combat vehicle based on the special requirements and military specifications. We evaluated the performance of the air-conditioning unit despite the rotating gun turret through analysis and tests in terms of flow improvement compared to the previous model.

Fault Detection and Diagnosis of a Constant Volume Air Handling Unit by a Fuzzy Algorithm (퍼지 알고리즘을 이용한 정풍량 공조기의 고장 감지 및 진단)

  • Han Doyoung;Kim Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.444-451
    • /
    • 2005
  • The fault detection and diagnosis technology may be applied in order to decrease the energy consumption and the maintenance cost of an air-conditioning system. In this study, partial faults for fans, coils, dampers, and sensors of a constant volume air handling unit were considered. A fuzzy algorithm was developed to detect and diagnose these faults. Diagnostic results by the fuzzy algorithm were compared with those by the model reference algorithm. The fuzzy algorithm showed better results in diagnostic accuracies.

An Experimental Study on Four-season Dedicated Outdoor Air Handling Unit (사계절 외기 전용 공조기에 대한 실험적 연구)

  • Park, Seung-Tae;Kim, Jong-Cheon;Hong, Young-Ju;Kim, Youn-Gil
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.577-582
    • /
    • 2008
  • The present study has been conducted to study the performance of Dedicated outdoor air handling unit. Dedicated outdoor air handling unit consists of pre-cooler, dehumidification and after cooler. By combining dedicated outdoor air-conditioning and heat pump, a new four-season dedicated outdoor air handling unit has been developed. Amount of energy saved and condition when this new system is superior to conventional vapor-compression cooling system has been presented.

  • PDF