• Title/Summary/Keyword: Air collecting

Search Result 167, Processing Time 0.028 seconds

Machine Learning Approach for Pattern Analysis of Energy Consumption in Factory (머신러닝 기법을 활용한 공장 에너지 사용량 데이터 분석)

  • Sung, Jong Hoon;Cho, Yeong Sik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.4
    • /
    • pp.87-92
    • /
    • 2019
  • This paper describes the pattern analysis for data of the factory energy consumption by using machine learning method. While usual statistical methods or approaches require specific equations to represent the physical characteristics of the plant, machine learning based approach uses historical data and calculate the result effectively. Although rule-based approach calculates energy usage with the physical equations, it is hard to identify the exact equations that represent the factory's characteristics and hidden variables affecting the results. Whereas the machine learning approach is relatively useful to find the relations quickly between the data. The factory has several components directly affecting to the electricity consumption which are machines, light, computers and indoor systems like HVAC (heating, ventilation and air conditioning). The energy loads from those components are generated in real-time and these data can be shown in time-series. The various sensors were installed in the factory to construct the database by collecting the energy usage data from the components. After preliminary statistical analysis for data mining, time-series clustering techniques are applied to extract the energy load pattern. This research can attributes to develop Factory Energy Management System (FEMS).

A Study on the Safety Index Service Model by Disaster Sector using Big Data Analysis (빅데이터 분석을 활용한 재해 분야별 안전지수 서비스 모델 연구)

  • Jeong, Myoung Gyun;Lee, Seok Hyung;Kim, Chang Soo
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.682-690
    • /
    • 2020
  • Purpose: This study builds a database by collecting and refining disaster occurrence data and real-time weather and atmospheric data. In conjunction with the public data provided by the API, we propose a service model for the Big Data-based Urban Safety Index. Method: The plan is to provide a way to collect various information related to disaster occurrence by utilizing public data and SNS, and to identify and cope with disaster situations in areas of interest by real-time dashboards. Result: Compared with the prediction model by extracting the characteristics of the local safety index and weather and air relationship by area, the regional safety index in the area of traffic accidents confirmed that there is a significant correlation with weather and atmospheric data. Conclusion: It proposed a system that generates a prediction model for safety index based on machine learning algorithm and displays safety index by sector on a map in areas of interest to users.

Measurement of Formaldehyde Emissions during Hot-Pressing of Particleboard Bonded with Melamine-Urea-Formaldihyde Resin (요소-멜라민수지로 접착된 파티클보드의 열압동안 포름알데히드 배출량 측정)

  • Lee, Jong-Kyu;Oh, Yong-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.65-72
    • /
    • 2004
  • A melamine-urea-formaldehyde (MUF) resin, based on 5 percent melamine addition of the resin solids weight, was synthesized in the laboratory for particleboard (PB) manufacture. Laboratory PBs were made with the MUF resin at three press times (3, 4, 5 min) and two resin application rates (6, 8 percent). Enclosed caul system was used for collecting the exhaust gases materials generated during the hot-pressing of PBs. Exhaust gases materials generated inside the enclosed caul during the hot-pressing of PBs were collected in a controlled air stream. Formaldehyde from the exhaust gases collected was determined per a chromotropic method of the National Institute of Occupational Safety and Health Method 3500. The measurement results showed that formaldehyde emissions during the hot-pressing of PB significantly increased with increasing press time, and MUF resin application rates. PB' performance test results showed that internal bond (IB) of PB made with 3-minute press time exceeded the minimum requirement for KS F 3104 PB type 8.0.

Analysis of Engine Load Factor for Agricultural Cultivator during Plow and Rotary Tillage Operation (플라우 및 로터리 작업 시 농업용 관리기의 엔진 부하율 분석)

  • Si-Eon Lee;Taek-Jin Kim;Yong-Joo Kim;Ryu-Gap Lim;Wan-Soo Kim
    • Journal of Drive and Control
    • /
    • v.20 no.2
    • /
    • pp.31-39
    • /
    • 2023
  • The aim of this study was to measure and analyze engine load factor (LF) according to working conditions (operation type and gear stage) of small agricultural multi-purpose cultivator to estimate the emission of air pollutants. To calculate LF, a torque sensor capable of collecting torque and rotational speed was installed on the engine output shaft and DAQ was used to collect data. A field test was conducted with major operation of a cultivator and tillage operations (plow tillage and rotary tillage). Engine power was calculated using engine torque and rotational speed and LF was calculated using real-time power and rated power. In addition, unified LF was calculated using the weight for each operation and the average LF for each operation. As a result, average LF values at 1.87 and 3.10 km/h by plow tillage were 0.50 and 0.69, respectively. Average LF values at 1.87 and 3.10 km/h by rotary tillage were 0.70 and 0.78, respectively. Furthermore, unified LF calculated in consideration of the weight factor showed a value of 0.65, which was 135% higher than the conventional LF (0.48). Results of this study could be used as basic information for realizing LF values in the field of agricultural machinery.

Algorithm for Freight Transportation Performance Estimation on Expressway Using TCS and WIM Data (TCS 및 WIM 데이터를 활용한 고속도로 화물수송실적 산정 알고리즘 개발)

  • Youjeong Kang;Jungyeol Hong;Yoonhyuk Choi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.116-130
    • /
    • 2023
  • Expressways play pivotal roles in cargo transportation because of their superior accessibility and mobility compared to rail and air. On the other hand, there is a limit to the accurate calculation of cargo transportation performance using existing highways owing to the mixture of vehicle types and difficulty in identifying cargo loads of individual cargo vehicles. This paper presents an algorithm for calculating more reliable cargo transportation performance using big data. The traffic performance (veh·km/day) was derived using the data collected from Toll Collecting System. The average tolerance weight for each vehicle type and the cargo load unit (ton/unit) considering it was calculated using vehicle specification information data and high-speed and low-speed axis data. This study calculated the cargo transportation performance by section and type using various online integrated highway data and presented a method for calculating the transportation performance by linking open business offices and private highways.

Comparison of Thermal Insulation of Multi-Layer Thermal Screens for Greenhouse: Results of Hot-Box Test (온실용 다겹보온자재의 보온성 비교 -Hot box 시험 결과를 중심으로-)

  • Yun, Sung-Wook;Lee, Si-Young;Kang, Dong-Hyeon;Son, Jinkwan;Park, Min-Jung;Kim, Hee-Tae;Choi, Duk-Kyu
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.255-264
    • /
    • 2019
  • In this study, we conducted the hot box tests to compare the changes in thermal insulation for the four types of multi-layer thermal screens by the used period after collecting them from the greenhouses in the field when they were replaced at the end of their usage. The main materials for these four types of multi-layer thermal screens were matt georgette, non-woven fabrics, polyethylene (PE) foam, chemical cotton, etc. These materials were differently combined for each multi-layer thermal screen. We built specimens ($70{\times}70cm$) for each of these multi-layer thermal screens and measured the temperature descending rate, heat transmission coefficient, and thermal resistance for each specimen through the hot box tests. With regard to the material combinations of multi-layer thermal screens, thermal insulation can be increased by applying a multi-layered PE foam. However, it is considered that the multi-layered PE foam significantly less contributes to heat-retaining than chemical wool that forms an air-insulating layer inside multi-layer thermal screens. For the suitable heat-retaining performance of multi-layer thermal screens, basically, materials with the function of forming an air-insulating layer such as chemical cotton should be contained in multi-layer thermal screens. The temperature descending rate, heat transmission coefficient, and thermal resistance of multi-layer thermal screens were appropriately measured through the hot box tests designed in this study. However, in this study, we took into consideration only the four kinds of multi-layer thermal screens due to difficulties in collecting used multi-layer thermal screens. This is the results obtained with relatively few examples and it is the limit of this study. In the future, more cases should be investigated and supplemented through related research.

An Evaluation of the Solar Thermal Performance of the Solar/Geo Thermal Hybrid Hot Water System for a Detached House (단독주택용 태양열/지열 융복합시스템의 태양열 급탕성능 평가)

  • Baek, Namchoon;Han, Seunghyun;Lee, Wang Je;Shin, Ucheul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.11
    • /
    • pp.581-586
    • /
    • 2015
  • In this study, an analysis was performed on the performance of the solar water heating system with geo-thermal heat pump for a detached house. This system has a flat plate solar collector ($8\;m^2$) and a 3 RT heat pump. The heat pump acts as an auxiliary heater of the solar water heating system. These systems were installed at four individual houses with the same area of $100\;m^2$. The monitoring results for one year are as follows. (1) The average daily operating time of the solar system appeared to be 313 minutes in spring (intermediate season), and 135 minutes and 76 minutes in winter and summer respectively. The reason for the short operating time in summer is the high storage temperature due to low water heating load. The high storage temperature is caused by a decrease in collecting efficiency as well as by overheating. (2) The geothermal heat pump as an auxiliary heater mainly operates on days of poor insolation during the winter season. (3) Despite controlling for total house area, hot water consumption varies greatly according to the number of people in the family, hot water usage habits, etc. (4) The yearly solar fraction was 69.8 to 91.5 percent, which exceeds the maximum value of 80% as recommended by ASHRAE. So the solar collector area of $8\;m^2$ appeared to be somewhat greater for the house with an area of $100\;m^2$. (5) The observed annual efficiency of solar systems was relatively low at 13.5 to 23.6%, which was analyzed to be due to the decrease in thermal efficiency and the overheating caused by a high solar fraction.

Patent Technologies for Reducing Micro-Dust (미세먼지 저감을 위한 특허기술들)

  • Cho, Taejun;Kim, Tae-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.9-14
    • /
    • 2020
  • Four developed patents have applied for a new type of Composite Cyclone Scrubber followed by the previous research (Cho and Kim, 2017), including dust reducing fan with filters. Regarding target installation and maintenance cost, 64% reduction for investment costs (6.2 billion won vs. 17 billion won) compared to existing road pollution reduction system, while social benefit costs increase by 43% compared to existing road pollution reduction measures (72.6 billion won vs. 50.8 billion won). The composition of the device is an air blower type spiral guide vane, and an injection pressure collecting dust efficiency. A nozzle varies Injection angle and contact range, spray liquid species (waterworks, salty water). The proposed patent tests are circulation water Time-by-Time Spray and collected 41.4% more increased micro dust since the sprayed water meets contaminated gas due to the 45° degree colliding, which is 141% increased conventional dust collector. (Ratio of collection over 85%). As regards the source of collection liquid, circulated rainwater and well water, we expect a huge amount of energy and economically saved eco-friendly system in our patent. Finally, the guided vane and metal filter reduced over 90% micro-dust, while sprayed water cleans the vane and filters, resultantly minimizing the maintenance budget. The preliminary evaluations of the developed design make it possible to reduce not only cheaper maintenance budget due to the characteristic water spraying but the cost of water comes from mainly rain and underground.

Seasonal Distribution and Diversity of Airborne Fungi in a Wooden Cultural Heritage Site: A Case Study of The Seonamsa Temple, Suncheon (목조문화재에서 계절에 따른 부유 진균의 분포 및 다양성에 관한 연구: 순천 선암사를 중심으로)

  • Hong, Jin Young;Kim, Young Hee;Lee, Jeung Min;Kim, Soo Ji;Jo, Chang Wook;Park, Ji Hee
    • The Korean Journal of Mycology
    • /
    • v.46 no.2
    • /
    • pp.122-133
    • /
    • 2018
  • The Seonamsa temple is located on steep terrain surrounded by forests and valleys, and is a place that the temple is scared of biological damage because it has high humidity and low wind levels. Therefore, we investigated a concentration and diversity of airborne fungi in indoor and outdoor by collecting air each season. The outdoor fungal load was far higher in spring ($276CFU/m^3$), autumn ($196CFU/m^3$), summer ($128CFU/m^3$) than in winter ($24CFU/m^3$). The lowest located Jijangjeon and upper located Wontongjeon showed the highest distribution of $337.4CFU/m^3$ in summer and $333.4CFU/m^3$ in autumn, respectively. Summer is the season with large variations in the concentration of airborne fungi between indoor and outdoor, a concentration of airborne fungi in indoor was maximum three times higher than these in outdoor with $128CFU/m^3$. Although the most fungi were collected in spring, fungal diversity was richer in summer and autumn with 28 genera 45 species and 25 genera 47 species, respectively. In particular, the concentration of airborne fungi was the most highest in all sampling sites in autumn, of which Ascomycota members accounted for 86% and Cladosporium genus was dominated. The most kind of Penicillium (16 species) was mainly distributed in indoor air in summer, autumn and winter.

Long-term performance of drainage system for leakage treatment of tunnel operating in cold region (한랭지역에서 운영 중인 터널의 누수처리를 위한 유도배수시스템의 장기 성능 평가)

  • Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1177-1192
    • /
    • 2018
  • The objective of this study is to develop the existing drainage system for catching the partial leakage of tunnel structures operating in cold region. The drainage system consists of drainage board, Hotty-gel as a waterproofing material, cover for preventing protrusion of Hotty-gel, air nailer, fixed nail, pipe for collecting ground leak, pipe for conveying ground leak, wire-mesh, and sprayed cement mortar. The drainage systems were installed in conventional concrete lining tunnels to evaluate the site applicability and constructability. The performances of waterproof and the drainage in the drainage system were evaluated by injecting 1,000 ml of red water in the back of the drainage system at 7 days, 14 days, 21 days, 28 days, 2 months, 3 months, 4 months, 5 months, 6 months, 7 months and 8 months. During 8 months of field test, the average daily temperature of the tunnel site was measured from $-16.0^{\circ}C$ to $25.6^{\circ}C$. The daily minimum temperature was $-21.3^{\circ}C$ and the daily maximum temperature was $30.8^{\circ}C$. There was no problem in waterproof and drainage performance of the drainage board in the drainage system. However, the pipe for conveying ground leak had the leakage problem from 14 days. It is considered that the leakage of the pipe for conveying ground leak was caused by the deformation of the pipe of the flexible plastic material having a thickness of 0.2 cm by using the high pressure air nailer and the fixing pin and the insufficient thickness and width of the hotty-gel for preventing the leakage.