• Title/Summary/Keyword: Air atomization

Search Result 326, Processing Time 0.027 seconds

An Analytical Study on Characteristics of a Diesel Injection System (디젤분사계의 특성에 관한 해석적 연구)

  • 장영준;박호준;전충환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.63-74
    • /
    • 1989
  • It is well-known that the fuel injection system if a diesel engine has taken a more important place in understanding of diesel combustion process with combustion chamber. But a diesel fuel injection system has an assembly of many complex and intricate problems such as the desired rate of injection, secondary injection and injection pump etc., in addition to the atomization for ignition and combustion, the penetration and diestribution for proper utilization of air. The analysis is carried out by simplifing and modeling the injection phenomena and dividing into three parts comprising of fuel injection pump, high pressure pipe and fuel injection nozzle. The purpose of this paper is to describe an analytical simulation of the injection system and to speed up the work of developing injection systems for new engines. The effects of important injection parameters as predicted by the present model are found to be in good agreement with experiment. It can be seen that there is an optimal pipe diameter for maximum quantity injected.

  • PDF

Evaluation of Accelerated Retirement Program for In-use Diesel Vehicles based on their NOx Emission Characteristics (노후 운행경유차의 NOx 배출특성분석 및 조기폐차대책을 통한 삭감 방안 검토)

  • Keel, Jihoon;Lim, Yunsung;Kim, Hyungjun;Roh, Hyungu;Yun, Boseop;Lee, Sangeun;Lee, Taewoo;Kim, Jeongsoo;Choi, Kwangho
    • Journal of ILASS-Korea
    • /
    • v.22 no.3
    • /
    • pp.122-128
    • /
    • 2017
  • Currently, the proportion of diesel vehicles in all automobile has grown significantly over the past few years. Air pollutant also grew up and became a social problem. In particular, the issue of NOx emissions caused by NOx high emission in real driving has become a global issue. Despite the fact that the regulatory and reduction project of the new vehicle is actively carried out, there are no existence regulations of In-use diesel vehicle's NOx emission. Therefore, the emission characteristics of the in-use diesel vehicles were investigated to seek ways to reduce NOx emissions in this study. The test targets were used in 237 close inspection of exhaust gases and model year varied from 1996 to 2011. However, the classification of emissions by emission standards differed considerably from NOx emissions. This means that the selection method for early retirement targets should be converted from model year to amount of emissions. If the current early retirement program was applied to the existing system, pre-Euro 3 was 22.530 g/km and Euro 4 was 21.810 g/km to NOx reduction. However, when the vehicle was changed to high emission target vehicle, NOx reduction increase maximum 84.705 kg/yr. According to the study results, an effective reduction in NOx emissions can be achieved if an earlier target in expanded to Euro 4 vehicles.

Characteristics of the In-cylinder Flow and Fuel Behavior with Respect to Engine Temperature Condition in the MPI Dual Injection Engine (MPI Dual Injection 엔진의 온도 조건 변화에 따른 엔진 내부 유동 및 연료 거동 특성에 관한 연구)

  • Lee, Seung Yeob;Chung, Jin Taek;Park, Young Joon;Yu, Chul Ho;Kim, Woo Tae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.210-219
    • /
    • 2014
  • The MPI dual injection engine can enhance the fuel efficiency and engine power. By using one injector per one intake port, MPI dual injection engine has an excellent fuel atomization and targeting injection. As the basic research for the MPI Dual injection engine design, this research was investigated in order to understand the characteristic of the in-cylinder flow and fuel behavior according to engine temperature condition and the fuel type in the MPI dual injection engines. The 3D unsteady CFD simulation for the MPI Dual injection engine was performed using STAR-CD. The engine operating condition was 2,000 rpm/WOT. The parameters for this study were fuel types, fuel temperatures and wall temperatures. As a result, the intake air amount, evaporated fuel in the cylinder and the fuel film on the wall were presented according to parameters that depend on the fuel properties and engine wall temperature. Also, the results were influenced by in-cylinder flow such as the intake flow, back flow and so on.

Characteristics of the In-cylinder Flow and Fuel Behavior with Respect to Fuel Injection Angle and Cone Angle in the PFI Dual Injection Engine (PFI Dual Injection 엔진의 연료 분사각도와 분무각에 따른 엔진 내부 유동 및 연료 거동 특성)

  • Lee, Seung Yeob;Chung, Jin Taek;Park, Young Joon;Yu, Chul Ho;Kim, Woo Tae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.221-229
    • /
    • 2015
  • The PFI dual injection engine using one injector per an intake port was developed for solving the DISI engine cost problem. Excellent fuel atomization and targeting of the PFI dual injection engine made enhancement on the fuel efficiency and engine power. In order to develop a PFI dual injection engine, characteristics of the in-cylinder flow and fuel behavior with respect to fuel injection angle and cone angle of the PFI dual injection engine was investigated. Numerical calculation was conducted to analyze 3D unsteady in-cylinder flow and fuel behavior using STAR-CD. The engine operating condition was 2,000rpm at WOT. As a result, the amount of intake air, evaporated fuel and fuel film according to injection angle and cone angle were presented. The results were influenced by interaction between injected fuel and intake port wall.

A Study on Combustion Process of Biodiesel Fuel using Swirl Groove Piston (Swirl Groove Piston에 의한 바이오 디젤연료의 연소과정에 관한 연구)

  • Bang, Joong-Cheol;Kim, Sung-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.105-113
    • /
    • 2009
  • The performance of a direct-injection type diesel engine often depends on the strength of swirl or squish, shape of combustion chamber, the number of nozzle holes, etc. This is of course because the combustion in the cylinder was affected by the mixture formation process. In this paper, combustion process of biodiesel fuel was studied by employing the piston which has several grooves with inclined plane on the piston crown to generate swirl during the compression stroke in the cylinder in order to improve the atomization of high viscosity fuel such as biodiesel fuel and toroidal type piston generally used in high speed diesel engine. To take a photograph of flame, single cylinder, four stroke diesel engine was remodeled into two stroke visible engine and high speed video camera was used. The results obtained are summarized as follows; (1) In the case of toroidal piston, when biodiesel fuel was supplied to plunger type injection system which has very low injection pressure as compared with common-rail injection system, the flame propagation speed was slowed and the maximum combustion pressure became lower. These phenomena became further aggravated as the fuel viscosity gets higher. (2) In the case of swirl groove piston, early stage of combustion such as rapid ignition timing and flame propagation was activated by intensifying the air flow in the cylinder. (3) Combustion process of biodiesel fuel was improved by the reason mentioned in paragraph (2) above. Consequently, the swirl grooves would also function to improve the combustion of high viscosity fuel.

Modeling Dynamic Behavior and Injection Characteristic of a GDI Injector (GDI 인젝터의 동적 거동과 분사 특성에 대한 모델링)

  • Lee, Kye Eun;Kim, Na Young;Cho, Young Jun;Lee, Dong Ryul;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.210-217
    • /
    • 2017
  • A gasoline direct injection engine has an intake air temperature can be lowered by the fuel vaporization in the combustion chamber increase the volume efficiency is high compression ratio. Therefore, study for injection rate and characteristics which influence mixture formation in combustion chamber is important. Movement of the injector needle has a direct effect on the injection of the fuel, such as formation of cavitation, the fuel injection rate, etc. Therefore, recent studies on the dynamic characteristics of the injector considering the movement of the needle have been reported, but it takes a lot of time and cost to experimentally confirm the movement of the needle inside the injector. In this study, AMESim, a commercial 1-D code, and Star-CCM+, a 3-D CFD code, were used to predict the dynamic performance of the injector with needle motion. In order to predict the movement of the needle under the high pressure, the result of the surface pressure distribution according to the movement of the needle was derived by using the morphing technique of flow analysis. In addition, we predicted the injection rate of the injector considering the movement of the needle in conjunction with the 1-D code. The injection rate of the injector was measured by the BOSCH's method and the results were similar to those of the simulation results. This method can predict the injection rate and injection characteristics and this result is expected to be used to predict the performance of gasoline direct injection engines with low cost and time in the future.

Performance Prediction according to Equivalence Ratio Change in Simulated-EGR Compression Ignition Engine Containing CO2 (CO2를 포함한 Simulated-EGR 압축착화엔진에서 당량비 변화에 따른 성능 예측)

  • Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.25 no.1
    • /
    • pp.21-26
    • /
    • 2020
  • The objective of this work is to numerically reveal the effect of equivalence ratio change on the simultaneous reduction of NOX and soot emissions from the simulated-EGR compression ignition engine containing CO2. An experiment was conducted by using a single-cylinder common-rail injection system engine, an intake control system, and exhaust emissions analyzers. The numerical analysis results were validated under the same experimental conditions. To investigate the effect of equivalence ratio by simulated-EGR containing CO2, the O2, N2, and CO2 mole fraction were changed in the initial air conditions to the cylinder. The results were analyzed in terms of peak cylinder pressure, indicated mean effective pressure, indicated specific nitrogen oxide, and indicated specific soot. It was revealed that ignition delay characteristics and heat release rate (ROHR) characteristics were not significantly different according to the equivalence ratio. However, as the equivalence ratio increased from 0.68 to 0.83, the maximum combustion pressure and IMEP decreased by about 6.5% and 9.4%, respectively. In the case of ISFC, as is well known, the trend is opposite of IMEP. In the case of ISNO, as the equivalence ratio increased, less NO was generated, and as the equivalence ratio increased by 0.05, the ISSoot value of about 10% increased.

A Study on Exhaust Emission Characteristics of Medium-Duty Trucks according to Emission Standards and Driving Modes (배출허용기준 및 주행모드에 따른 중형화물차의 대기오염물질 배출특성)

  • Chung, Taek Ho;Kim, Sun Moon;Lee, Jong Chul;Lim, Yun Sung;Kim, In Gu;Lee, Jong Tae;Kim, Hyung Jun
    • Journal of ILASS-Korea
    • /
    • v.25 no.1
    • /
    • pp.27-33
    • /
    • 2020
  • NOx, PN and CO emissions from diesel trucks make up a significant portion of domestic air pollutant emissions. Therefore, test vehicles with various emission standards and driving modes were selected to evaluate the emission characteristics of regulated pollutants (NOx, PN, CO) in medium-duty trucks. As a result of test, all test vehicles were satisfied with Euro 5 or 6 regulation. NOx emissions of Euro 6 vehicles with after-treatment of LNT + DPF were lower than those of Euro 5 vehicles with DPF. In WLTC mode, all vehicles have high NOx emissions at section of extra high speeds, which are determined by increased fuel consumption and high combustion temperatures. CO and PN emissions from all vehicles were found to be low at section of low speeds. Also, The NO2/NOx ratio was analyzed at 7-23% in each mode, and the NO2/NOx ratio increased as the average vehicle speed increased. In NIER 9 mode, the CO, HC, and PN emissions were higher under cold conditions of engine than hot conditions of engine. In addition, vehicles with after-treatment system of LNT have similar NOx emissions level in this study.

The Optimization of Fuel Injection Nozzles for the Reduction of NOx Emissions in a Large Diesel Engine (대형 디젤엔진의 NOx 저감을 위한 연료분사노즐 최적화 연구)

  • Yoon, Wook-Hyeon;Kim, Byung-Seok;Kim, Dong-Hun;Kim, Ki-Doo;Ha, Ji-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.60-65
    • /
    • 2004
  • Numerical simulations and experiments have been carried out to investigate the effect of fuel injection nozzles on the combustion and NOx formation processes in a medium-speed marine diesel engine. Spray visualization experiment was performed in the constant-volume high-pressure chamber to verify the numerical results on the spray characteristics such as spray angle and spray tip penetration. Time-resolved spray behaviors were captured by high-speed digital camera and analyzed to extract the information on the spray parameters. Spray and combustion phenomena were examined numerically using FIRE code. Wave breakup and Zeldovich models were adopted to describe the atomization characteristics and NOx formation processes. Numerical results were verified with experimental data such as cylinder pressure, heat release rate and NOx emission. Finally, the effects of fuel injection nozzles on the engine performance were investigated numerically to find the optimum nozzle parameters such as fuel injection angle, nozzle hole diameter and number of nozzle holes. From this study, the optimum fuel injection nozzle (nozzle hole diameter, 0.32 mm, number of nozzle holes, 8 and fuel injection angle, $148^{\circ}$) was selected to reduce both the fuel consumption and NOx emission. The reason for this selection could be explained from the highest fuel-air mixing in the early phase of injection due to the longest spray tip penetration and the highest heat release rate after $19^{\circ}$ ATDC due to the increased injection duration.

STUDY OF CORRELATION BETWEEN WETTED FUEL FOOTPRINTS ON COMBUSTION CHAMBER WALLS AND UBHC IN ENGINE START PROCESSES

  • KIM H.;YOON S.;LAI M.-C.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.437-444
    • /
    • 2005
  • Unburned hydrocarbon (UBHC) emissions from gasoline engines remain a primary engineering research and development concern due to stricter emission regulations. Gasoline engines produce more UBHC emissions during cold start and warm-up than during any other stage of operation, because of insufficient fuel-air mixing, particularly in view of the additional fuel enrichment used for early starting. Impingement of fuel droplets on the cylinder wall is a major source of UBHC and a concern for oil dilution. This paper describes an experimental study that was carried out to investigate the distribution and 'footprint' of fuel droplets impinging on the cylinder wall during the intake stroke under engine starting conditions. Injectors having different targeting and atomization characteristics were used in a 4-Valve engine with optical access to the intake port and combustion chamber. The spray and targeting performance were characterized using high-speed visualization and Phase Doppler Interferometry techniques. The fuel droplets impinging on the port, cylinder wall and piston top were characterized using a color imaging technique during simulated engine start-up from room temperature. Highly absorbent filter paper was placed around the circumference of the cylinder liner and on the piston top to collect fuel droplets during the intake strokes. A small amount of colored dye, which dissolves completely in gasoline, was used as the tracer. Color density on the paper, which is correlated with the amount of fuel deposited and its distribution on the cylinder wall, was measured using image analysis. The results show that by comparing the locations of the wetted footprints and their color intensities, the influence of fuel injection and engine conditions can be qualitatively and quantitatively examined. Fast FID measurements of UBHC were also performed on the engine for correlation to the mixture formation results.