• Title/Summary/Keyword: Air Uniformity

Search Result 249, Processing Time 0.022 seconds

A Study on the Characteristics of Air flow Fields with Velocity Uniformity in a Wind Tunnel (풍동장치 내 공기 유동장과 속도 균일도 특성에 대한 분석)

  • Han, Seok Jong;Lee, Sang Ho;Lee, Jae Gyu
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.3
    • /
    • pp.59-64
    • /
    • 2018
  • Numerical simulations were carried out to analyze the flow characteristics of the wind tunnel. Flow field characteristics with velocity uniformity at the test sections are largely affected by inlet conditions of air flow rate and temperature. Axial average velocity of the flow field inside the test area was almost linearly decreased by 0.026% each 1m. The uniformity distributions of axial velocity showed the highest reduction rate of about 24% between nozzle outlets 1 ~ 2m. In addition, average velocity and the uniformity are increased with air temperature in the wind tunnel due to density variation. The results of this paper are expected to be useful for the basic design of wind tunnel and to be used for efficient design.

Effects of the angle of secondary air inlet on the uniformity of temperature distribution inside an incinerator (2차 공기 주입각이 소각로 내부의 온도 분포 균일도에 미치는 영향)

  • Kim S. J.;Min I. H.;Park M. H.;Park M. J.
    • Journal of computational fluids engineering
    • /
    • v.5 no.3
    • /
    • pp.8-15
    • /
    • 2000
  • This research is aimed to find out how the inlet angle of secondary air affects the uniformity of temperature distribution inside a small incinerator. A commercial code, PHOENICS, is used to simulate the thermal-flow field of an incinerator. The computational grid system is constructed by Multi-Block technique provided by PHOENICS. Numerical experiments are done with the five different angles of secondary air inlet. The uniformity of temperature distribution is evaluated by checking the standard deviation of temperature distribution in an incinerator. The computational results show that there is the minimum value of standard deviation at the certain angle of secondary air inlet, which means that there is an optimum angle of secondary air inlet that could improve the uniformity of temperature distribution in an incinerator. The optimum angle of secondary air inlet is between 30 degree and 45 degree in this particular case.

  • PDF

Real-Time Compensation of Errors Caused by the Flux Density Non-uniformity for a Magnetically Suspended Sensitive Gyroscope

  • Chaojun, Xin;Yuanwen, Cai;Yuan, Ren;Yahong, Fan;Yongzhi, Su
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.315-325
    • /
    • 2017
  • Magnetically suspended sensitive gyroscopes (MSSGs) provide an interesting alternative for achieving precious attitude angular measurement. To effectively reduce the measurement error caused by the non-uniformity of the air-gap flux density in a MSSG, this paper proposes a novel compensation method based on measuring and modeling of the air-gap flux density. The angular velocity measurement principle and the structure of the MSSG are described, and then the characteristic of the air-gap flux density has been analyzed in detail. Next, to compensate the flux density distribution error and improve the measurement accuracy of the MSSG, a real-time compensation method based on the online measurement with hall probes is designed. The common issues caused by the non-uniformity of the air-gap flux density can be effectively resolved by the proposed method in high-precision magnetically suspended configurations. Comparative simulation results before and after compensation have verified the effectiveness and superiority of the proposed compensation method.

CFD Analysis on the Fresh Air Distribution in the Catalytic Converter Varying Secondary Air Injector Position (2차 공기 분사 위치에 따른 촉매 내 공급 공기 분포에 대한 전산 유동해석)

  • Yun, Jeong-Eui
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.31-36
    • /
    • 2010
  • SAI(Secondary Air Injection) system has been studied widely as one of the promising countermeasure for reducing HC emission at cold start. In this paper, in order to find out the optimal position of SAI, computational thermal fluid analysis on exhaust system adapted SAI system is performed using commercial 3-D CFD code, CFX. The present results showed that SAI position strongly affected the uniformity of air distribution in front of catalyst. And also through the decision process of optimal position of SAI, new index, uniformity of air distribution($U_{\phi}$) is proposed to define it quantitively. Because $U_{\phi}$ is very simple equation and similar with flow uniformity, it is very easy to figure out the physical meaning and to apply it to practices. Finally, we applied the index $U_{\phi}$ to the decision process of the optimal position of SAI, so that we could get the clear comparison results.

Effect of Vanes on Flow Distribution in a Diffuser Type Recuperator Header (디퓨저 타입 레큐퍼레이터 헤더에서 유동분배에 미치는 베인의 영향)

  • Jeong Young-Jun;Kim Seo-Young;Kim Kwang-Ho;Kwak Jae-Su;Kang Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.10
    • /
    • pp.819-825
    • /
    • 2006
  • In a SOFC/GT (solid oxide fuel cell/gas turbine) hybrid power generation system, the recuperator is an indispensible component to enhance system performance. Since the expansion ratio to the recuperator core is very large, generally, the effective header design to distribute the flow uniformly before entering the core is crucial to guarantee the required performance. In the present study, we focus on the design of a diffuser type recuperator header with a 90 degree turn inlet port. To reduce the flow separation and recirculation flows, multiple horizontal vanes are used. The number of horizontal vanes is varied from 0 to 24. The air flow velocity is measured at 40 points just behind the core outlet by using a hot wire anemometer. Then, the flow non-uniformity is evaluated from the measured flow velocity. The experimental results showed that inlet air velocity did not effect on relative flow non-uniformity. According to increasing the number of horizontal vanes, flow non-uniformity reduced about $40{\sim}50%$ than without using horizontal vanes.

Study on Numerical Analysis of Shape and Guidevane Design for Improving a 500 PS SCR Reactor's Flow Uniformity (500 PS SCR 반응기의 유동균일도 향상을 위한 형상 및 가이드베인 설계에 대한 수치해석적 연구)

  • Seong, Hongseok;Lee, Chungho;Suh, Jeongse
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.1
    • /
    • pp.35-41
    • /
    • 2016
  • With the assumption that the performance of a catalyst is guaranteed and that the performance of an SCR reactor is influenced by the uniformity of fluid flow into the catalyst, this study carried out a numerical analysis of flow uniformity, which is an important design factor in SCR reactors. CFD was used to grasp flow uniformity and flow characteristics inside the SCR reactor. As for the flow uniformity, analysis was carried out on the velocity and direction of the fluid flowing into the front of the first SCR reactor. Numerical analysis was carried out in terms of the area ratios of the mixing evaporator to the catalyst for 500 PS SCR, 1 : 1.9, 1 : 3.1, 1 : 4.5, and 1 : 7.0. The results showed that the larger the area ratio, the smaller the flow uniformity. On the basis of these results, the flow uniformity of the modified SCR reactor is 77%. A guidevane was installed to improve flow uniformity, and attempts were made to grasp the flow uniformity based on the shape of the guide vane. The shape of the guide vane was cylindrical, and numerical analysis was carried out for cases with two cylinders and three cylinders. As a result of the numerical analysis, it was found that while there was no great difference between 82.7% with two cylinders and 81.7% with three cylinders, the effects of the installation of the guide vane on the improvement of flow uniformity were indisputable.

Analysis on the Uniformity of Temperature and Humidity According to Environment Control in Tomato Greenhouses (토마토 재배 온실의 환경조절에 따른 온습도 균일도 분석)

  • Nam, Sang-Woon;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.215-224
    • /
    • 2009
  • A survey on the actual state of heating, cooling, ventilation, and air-flow and experimental measurement of temperature and humidity distribution in tomato greenhouse were performed to provide fundamental data required in the development of air-flow control technology. In single-span plastic houses, which account for most of 136 tomato greenhouses surveyed, roof windows, ventilation and air-flow fans were installed in a low rate, and installation specs of those facilities showed a very large deviation. There were no farms installed greenhouse cooling facilities. In the hot air heating system, which account for most of heating type, installation specs of hot air duct showed also a large deviation. The exhaust air temperature and wind speed in hot air duct also were measured to have a big difference depending on the distance from the heater. We are using the maximum difference as indicator to determine whether temperature distribution is uniform. However if the temperature slope is not identical in greenhouse, it can't represent the uniformity. We analyzed relation between the maximum difference and the uniformity of temperature and humidity distribution. The uniformity was calculated using the mean and standard deviation of data from 12 measuring points. They showed high correlation but were represented differently by linear in the daytime and quadratic in the nighttime. It could see that the uniformity of temperature and humidity distribution was much different according to greenhouse type and heating method. The installation guidelines for ventilation and air-flow fan, the spread of greenhouse cooling technology for year-round stable production, and improvement of air duct and heating system, etc. are needed.

Reengineering of Bus Engine Room Structure for Preventing Thermal Damages (열해현상 방지를 위한 버스 엔진룸 구조개선)

  • 맹주성;윤준용;손한규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.46-55
    • /
    • 2000
  • Four types of different flow inlet models were tested to improve the flow uniformity at the inlet of the radiator and to prevent thermal damages of auxiliary units from the hot air in the bus engine room. Measurements and numerical calculations were performed and their results were in a good agreement with each other. Simultaneously temperature measurements were carried out under the conditions of actual bus driving. As designing the new flow inlet at the partition board which seperates the engine space and radiator space, flow circulation can be achieved and fresh air comes into the engine room from the bottom. It was proved that new inlet makes the one air temperature cooling down in the engine room, the other uniformity improvement.

  • PDF

A Study on Numerical Analysis of Flow Uniformity According to Length and Degree Change of Mixed-Evaporator in 500 PS SCR Reactor (500 PS SCR 반응기 혼합증발관 길이와 각도 변화에 따른 유동균일도에 대한 수치해석적 연구)

  • Seong, Hongseok;Lee, Chungho;Suh, Jeongse
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.8
    • /
    • pp.337-342
    • /
    • 2016
  • A marine SCR System is emerging as an alternative to comply with NOx Tier III Emission standards, a restriction on greenhouse gas from vessels implemented by the International Maritime Organization. The system is greatly affected by the uniformity of the fluid flowing into the catalyst, so the performance of the catalyst of an SCR system needs to be guaranteed. This study conducted research on a mixed evaporator of an SCR system, which is one of the factors affecting the uniformity of the fluid. When the angle of the mixed evaporator is set to $90^{\circ}$, the fluid uniformity is at its highest at 83%, under the condition that the length of the mixed evaporator be 3.5 D. When the length was 3.5 D and less, the fluid uniformity had a tendency to improve relative to the case without a bent pipe. However, a longer mixed evaporator results in a more perfect liquidity development in the pipe with a liquidity distribution similar to the case where no curved pipe is formed in front of the catalyst. A lower angle for the mixed evaporator results in a lower flow uniformity, and a longer length of the mixed evaporator results in a lower difference in the flow uniformity caused by the angle. The flow uniformity can be improved by 6% with a mixed evaporator, which confirmed that all factors applied to an SCR system have a close relationship with the efficiency.

Study on Non-uniform Thermal Comfort in Hybrid Air-Conditioning System with CFD Analysis (CFD 해석을 통한 하이브리드 공조시스템의 인체 온열감의 불균일성에 관한 연구)

  • Nam, Yu-Jin;Sung, Min-Ki;Song, Doo-Sam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.3
    • /
    • pp.216-222
    • /
    • 2011
  • Recently, hybrid air-conditioning system has been proposed and applied to achieve building energy saving. One example is a system combining radiation panel with natural wind-induced cross-ventilation. However, few research works have been conducted on the non-uniformity of thermal comfort in such hybrid air-conditioning system. In this paper, both thermal environment and non-uniform thermal comfort of human thermal model under various air-conditioning system, including hybrid system, were evaluated in a typical office room using coupled simulation of computation fluid dynamics, radiation model and a human thermal model. The non-uniformity of thermal comfort was evaluated from the deviation of surface temperature of human thermal model. Flow fields and temperature distribution in each case were represented.