• Title/Summary/Keyword: Air Traffic Flow

Search Result 83, Processing Time 0.023 seconds

Isolation Performance of the Single-Sided air Curtain in Air-Conditioned Space (공조공간에서 수평토출형 에어커튼의 차단 성능)

  • Sung, Sun-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.11
    • /
    • pp.806-812
    • /
    • 2012
  • Air curtains are widely used in commercial and public buildings to replace solid doors where traffic of people is predicted. At doorways where the solid door is open continuously or intermittently, an air curtain may be installed in order to reduce the flow of heat and moisture from the enclosed space to the outside. The purpose of this paper is to predict isolation performance of the single-sided air curtain when the wind is blowing. For the study, a numerical simulation is used to find the influence of various jet velocities on the efficiency of the single-sided air curtain device which is mounted at the side of the doorway. The isolation performance of the single-sided air curtain is evaluated by sealing efficiency which provides the assessment of the infiltration air ratio. According to the result of this study, the single-sided air curtain has lower sealing efficiency than downward-blowing air curtain. Therefore, for energy conservation in heating space, the single-sided air curtain is not recommended because of its low effectiveness.

CFD analysis of ventilation efficiency around an elevated highway using visitation frequency and purging flow rate

  • Huang, Hong;Kato, Shinsuke;Ooka, Ryozo;Jiang, Taifeng
    • Wind and Structures
    • /
    • v.9 no.4
    • /
    • pp.297-313
    • /
    • 2006
  • The concentration of air pollution along roads is higher than the surrounding area because ventilation efficiency has decreased due to the high-density use of space along roads in recent years. In this study, ventilation efficiency around a heavily traffic road covered by an elevated highway and hemmed in along its side by buildings is evaluated using Visitation Frequency (VF, the frequency for pollutant to return to the objective domain) and Purging Flow Rate (PFR, the air flow rate for defining the local domain-averaged concentration). These are analyzed using Computational Fluid Dynamics (CFD) based on the standard $k-{\varepsilon}$ model. The VF and PFR characteristics of four objective domains are analyzed in terms of the changes in wind direction and arrangements of the fencing dividing up and down direction in the road center under the elevated highway. The resulting VFs are more than 1.0 for all cases, which means that pollutants return to the objective domain restricted by the elevated highway and side buildings. The influence of the arrangement of the buildings around the objective domain and the structure in the domain on the VF is substantial. In cases where there are no obstacles under the elevated highway, the local air exchange rate in the domain tends to be improved. Using these indices, the urban ventilation efficiencies between different urban areas can be compared easily.

Impact of Transportation on Air Quality and Carbon Emissions in Developing Countries: A Case of Myanmar (개발도상국의 교통수단이 대기 질 및 탄소배출에 미치는 영향: 미얀마를 중심으로)

  • Wut Yee Lwin;Byoung-Jo Yoon
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.1
    • /
    • pp.231-240
    • /
    • 2023
  • Purpose: The purpose of this study is to analyze air quality and carbon emissions in developing countries, particularly Myanmar, and explore the impact of transportation on CO2 emissions during peak hours relative to free-flow conditions. Method: This study conducted a traffic survey in two major cities in Myanmar to quantify carbon dioxide emissions from the transportation sector, using IPCC's tier 1 and tier 2 approaches, with statistical analysis performed using Python 3 and Microsoft Excel for comparative analysis of critical factors in CO2 emissions. Result: The result of this study is an estimate of the vehicle kilometers traveled (VKT) and fuel consumption in Yangon city for the year 2019, based on data from various sources including the Myanmar Statistical data base, YUTRA project survey, and Ministry of Electric and Energy. The study also analyzes the average travel time index (TTI) for the four roads in Yangon, which indicates the impact of congestion on vehicle travel time and CO2 emissions. Overall, the study provides important insights into the transport sector in Yangon city and can be used to inform policies aimed at reducing greenhouse gas emissions and improving traffic conditions. Conclusion: The study concludes that congestion plays a significant role in increasing fuel use and emission levels in the road transport sector in Myanmar. The analysis provides valuable insights into the impact of the sector on the environment and emphasizes the importance of addressing congestion to reduce fuel use and emissions. However, the study's scope is limited to Yangon city and Mandalay city, and some mean values may not accurately represent the entire country and other developing countries.

Air Pollutant Emission Characteristics of a Light Duty Diesel Vehicle Affected by Road Infrastructure Improvement and Traffic flow Changes (도로 기반시설 개선과 교통흐름 변화에 따른 소형 경유자동차의 대기오염물질 배출특성)

  • keel, Jihoon;Lee, Taewoo;Lee, Sangeun;Jung, Sungwoon;Yun, Boseop;Kim, Jeongsoo;Choi, Kwangho
    • Journal of ILASS-Korea
    • /
    • v.21 no.4
    • /
    • pp.214-222
    • /
    • 2016
  • Changes in road infrastructure affect driving patterns and pollutant emission characteristics. we analyzed the changes in driving patterns and pollutant emission characteristics of the driving route via measured driving patterns at year 2009 and 2016. Since 2009, there has been an increase in population and traffic demand, including residential areas and industrial facilities. Traffic conditions were improved such as the opening of the highway Inter-Change to Seoul and the construction of underground driveway. As a result, the average vehicle speed increased. More detail comparisons have made on the changes of the underground driveway section and the crossroad section, which are expected to have significant changes in the transportation infrastructure. The vehicle speed distribution of the underground driveway changed from low speed to high speed, and the increase of the time spent at the high speed and high load caused the increase of NOx emissions. The vehicle speed also increased at the crossroad section, and the consequence NOx and $CO_2$ emissions decreased. It is mainly because the decreased time spent at idle, which results from the proper traffic demand management at this area.

GNSS-based Parallel Approaches to Increase Airport Capacity (공항용량 향상을 위한 위성항법기반 평행 접근 연구)

  • Shin, Gwon-Sang;Yuh, Song-Hee;Lee, Hyung-Bok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.2
    • /
    • pp.53-59
    • /
    • 2014
  • Simultaneous parallel approaches in all weather conditions should be applied to manage efficiently increasing volume of air traffic flow and solve the problem of delayed arrivals. But All of the airports which have closely-spaced parallel-runways in Korea don't meet the interval-standards for IFR parallel approaches. In that regard, more accurate and safer System should be applied for the Korean airports. GNSS was adopted as an international standard of the next-generation navigation system and many studies and master plans have been activated by stages in Korea. In this paper, the current state of the domestic airports will be analyzed focusing on the interval of parallel runways and future specification of both flight operation system and air-side management will be recommended.

An Analysis on the Emission Reduction Effect of Diesel Light-duty Truck by Introducing Electronic Toll Collection System on Highways (고속도로 영업소의 자동 요금 징수 시스템 도입에 따른 소형 경유 화물트럭의 배출가스 저감 효과 분석)

  • Park, Junhong;Lee, Jongtae;Lee, Taewoo;Kim, Jiyoung;Kim, Jeongsoo;Kil, Jihoon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.506-517
    • /
    • 2012
  • Electronic Toll Collection System (ETCS), so called "Hi-Pass" in Korea, has improved traffic flow at toll gate of highways. It is known that the improvement of traffic flow should reduce air pollutants and $CO_2$ from vehicles. In this study, real driving emission of a light duty truck with Portable Emission Measurement System(PEMS) has been measured to evaluate the emission reduction effect due to ETCS. The correlations between driving variables and emissions have been analyzed to verify its effect on traffic flow improvement and emission reduction at toll gate. We considered average vehicle speed, Relative Positive Acceleration (RPA), and the distance of queue as driving variables. Compared to passing Manual Toll Collection System (MTCS) lane without queue, ETCS was able to reduce 38.7% of $NO_x$, 21.6% of soot, and 27.7% of $CO_2$. The results showed that the higher the average vehicle speed, the lower RPA and no queue in ETCS contributed to the emission reductions. Linear equation models with RPA and queue have been established by the multiple linear regression method. The linear models resulted in the higher coefficient of determination than those with only average vehicle speed used for establishing vehicle emission factors.

Analysis Method for Air Quality Improvement Effect of Transport and Environment Policy (교통환경정책의 대기질 개선효과 분석 방법론 연구)

  • LEE, Gunwoo;HAHN, Jin-Seok
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.1
    • /
    • pp.37-49
    • /
    • 2017
  • This study proposes an analysis methodology for air quality improvement effect of transport and environment policy that are used for mobile pollution sources. The methodology considers the changes of traffic of road transport sources and air pollutant emission, the changes of atmospheric dispersion of air pollutants and the effects on the health of local residents in response to policy implementation. Especially, the changes to traffic flow must be considered in evaluating the effects on atmospheric environment as it has a direct connection to the effects of the policy in this study. We used bottom-up approach (BUA) based on the travel demand model to reflect the changes of travel behavior in detail in response to the policy implementation compared to the top-down approach (TDA) when calculating the changes of emission level of road transport. We showed the applicability of the proposed analysis methodology through a policy scenario analysis, and the analysis method can be effectively applied to the cases in which travelers' behavior changes are expected.

Development of Intelligent Cruise Control System for Automobile

  • Lim. Young Do;lee. Joon Tark;Won, Bang-Suk;Sul. Jae Hoon;Han. Chang Hoon;Kim, . Seung Chul;Park, . Jong Oh
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.199-202
    • /
    • 1998
  • This paper describe an intelligent cruise control system for automobile. With the remarkable numerical increase of automobiles on the road, the optimized traffic flow control using the cruise control is one of the very important traffic problems to overcome the limitation of an existing road capacity. Based on this idea that minimize the fuel cost and the air pollution, and accept a driver's needs for driving, we have developed an intelligent cruise control system for vehicle. This proposed intelligent fuzzy cruise controller was successfully implemented using the fuzzy algorithm, the i80c196 μ-controller board and the throttle valve actuator. The field test results on an linear road was introduced.

  • PDF

A Case Study of Coastal Fog Event Causing Flight Cancellation and Traffic Accidents (항공기 결항과 연쇄 교통사고를 야기한 연안안개 사례 연구)

  • Kim, Young Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • A heavy foggy event accompanying with complex coastal fog was investigated in this study. This heavy foggy event occurred on FEB 11, 2015. Due to reduced visibility with this foggy event induced more than 100times serial traffic accidents over the Young-jong highway, and Flights from 04:30 AM to 10:00 AM were cancelled on Inchon International Airport. This heavy foggy event was occurred in synoptic and mesoscale environments but dense coastal fog were combined with a combination of sea fog, steam fog, and radiation fog. This kind of coastal fog can predicted by accurate analysis of the direction of the air flow, sea surface temperature(SST), and 925hPa isotherms from numerical weather prediction charts and real time analysis charts.

Machine Learning Based Capacity Prediction Model of Terminal Maneuvering Area (기계학습 기반 접근관제구역 수용량 예측 모형)

  • Han, Sanghyok;Yun, Taegyeong;Kim, Sang Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.3
    • /
    • pp.215-222
    • /
    • 2022
  • The purpose of air traffic flow management is to balance demand and capacity in the national airspace, and its performance relies on an accurate capacity prediction of the airport or airspace. This paper developed a regression model that predicts the number of aircraft actually departing and arriving in a terminal maneuvering area. The regression model is based on a boosting ensemble learning algorithm that learns past aircraft operational data such as time, weather, scheduled demand, and unfulfilled demand at a specific airport in the terminal maneuvering area. The developed model was tested using historical departure and arrival flight data at Incheon International Airport, and the coefficient of determination is greater than 0.95. Also, the capacity of the terminal maneuvering area of interest is implicitly predicted by using the model.