• Title/Summary/Keyword: Air Temperature Rise

Search Result 308, Processing Time 0.028 seconds

Analysis about CO Diffusion Change Caused by Climate Change Using CALPUFF (CALPUFF 모델을 이용한 기후변화에 따른 일산화탄소의 대기오염 영향 분석)

  • Ha, Minjin;Lee, Taekyeong;Lee, Im Hack;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.8 no.2
    • /
    • pp.81-89
    • /
    • 2017
  • In this study CALPUFF was used to estimate the influence of temperature rise, according to the observation value of temperature rise based RCP scenario, on meteorological elements (wind direction, wind speed, mixing height) and the change of pollutant diffusion. According to the result. applying estimated value of year 2050 temperature rise, the mixing height is increased as per the temperature rise, so the range of atmospheric diffusion is widened. In summer case, by applying temperature rise of $4^{\circ}C$ and comparing with before applying temperature rise, there was change of diffusion range as per the change of temperature between 10 AM to 11 PM. And the range of diffusion was wider than that of before temperature rise. In winter case, by applying estimated value of temperature rise, $2.3^{\circ}C$, diffusion range has been changed between 8 AM to 4 PM, showing different diffusion aspect from summer. Also, according to the result of air pollution level assessment with temperature rise, it was proved that the ratio of area with increasing air pollution level has been getting higher by increase of temperature.

A Study on Air Temperature Difference between Windward and Leeward Side at High-rise Buildings (고층건물 풍상면과 풍하면의 기온차)

  • Jin, Ri;Cui, Hua;Yu, Jin-Hang;Ku, Hee-Yeong;Zheng, Hai-Yan;Jin, Wen-Cheng;Lee, Kyoo-Seock
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.1
    • /
    • pp.63-71
    • /
    • 2012
  • To investigate the air temperature difference between windward and leeward side at high-rise building area, the air temperature and relative humidity data were observed for 10 minute interval from July 9, 2011 to November 30, 2011. The observed data were compared, analyzed and examined to illustrate air temperature between windward side (H Apartment) and Leeward side (W Apartment). The diurnal and seasonal variation of air temperature difference between windward and leeward site were also investigated. After the analysis, the overheat of windward side by $0.4^{\circ}C$ irrespective short distance of two observation positions. It was also lower than those of surrounding air temperature observing stations. It is mainly due to the air temperature decreasing effects of leeward side of high rise buildings.

Simulation of Drying Grain with Solar-Heated Air (태양에너지를 이용한 곡물건조시스템의 시뮬레이션에 관한 연구)

  • 금동혁;김용운
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.65-83
    • /
    • 1979
  • Low-temperature drying systems have been extensively used for drying cereal grain such as shelled corn and wheat. Since the 1973 energy crisis, many researches have been conducted to apply solar energy as supplemental heat to natural air drying systems. However, little research on rough rice drying has been done in this area, especially very little in Korea. In designing a solar drying system, quality loss, airflow requirements, temperature rise of drying air, fan power and energy requirements should be throughly studied. The factors affecting solar drying systems are airflow rate, initial moisture content, the amount of heat added to drying air, fan operation method and the weather conditions. The major objectives of this study were to analyze the effects of the performance factors and determine design parameters such as airflow requirements, optimum bed depth, optimum temperature rise of drying air, fan operation method and collector size. Three hourly observations based on the 4-year weather data in Chuncheon area were used to simulate rough rice drying. The results can be summarized as follows: 1. The results of the statistical analysis indicated that the experimental and predicted values of the temperature rise of the air passing through the collector agreed well. 2. Equilibrium moisture content was affected a little by airflow rate, but affected mainly by the amount of heat added, to drying air. Equilibrium moisture content ranged from 12.2 to 13.2 percent wet basis for the continuous fan operation, from 10.4 to 11.7 percent wet basis for the intermittent fan operation respectively, in range of 1. 6 to 5. 9 degrees Centigrade average temperature rise of drying air. 3. Average moisture content when top layer was dried to 15 percent wet basis ranged from 13.1 to 13.9 percent wet basis for the continuous fan operation, from 11.9 to 13.4 percent wet basis for the intermittent fan operation respectively, in the range of 1.6 to 5.9 degrees Centigrade average temperature rise of drying air and 18 to 24 percent wet basis initial moisture content. The results indicated that grain was overdried with the intermittent fan operation in any range of temperature rise of drying air. Therefore, the continuous fan operation is usually more effective than the intermittent fan operation considering the overdrying. 4. For the continuous fan operation, the average temperature rise of drying air may be limited to 2.2 to 3. 3 degrees Centigrade considering safe storage moisture level of 13.5 to 14 perceut wet basis. 5. Required drying time decrease ranged from 40 to 50 percent each time the airflow rate was doubled and from 3.9 to 4.3 percent approximately for each one degrees Centigrade in average temperature rise of drying air regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on required drying time. 6. Required drying time increase ranged from 18 to 30 percent approximately for each 2 percent increase in initial moisture content regardless of the fan operation methods, in the range of 18 to 24 percent moisture. 7. The intermittent fan operation showed about 36 to 42 percent decrease in required drying time as compared with the continuous fan operation. 8. Drymatter loss decrease ranged from 34 to 46 percent each time the airflow rate was doubled and from 2 to 3 percent approximately for each one degrees Centigrade in average temperature rise of drying air, regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on drymatter loss. 9. Drymatter loss increase ranged from 50 to 78 percent approximately for each 2 percent increase in initial moisture content, in the range of 18 to 24 percent moisture. 10. The intermittent fan operation: showed about 40 to 50 percent increase in drymatter loss as compared with the continuous fan operation and the increasing rate was higher at high level of initial moisture and average temperature rise. 11. Year-to-year weather conditions had a little effect on required drying time and drymatter loss. 12. The equations for estimating time required to dry top layer to 16 and 1536 wet basis and drymatter loss were derived as functions of the performance factors. by the least square method. 13. Minimum airflow rates based on 0.5 percent drymatter loss were estimated. Minimum airflow rates for the intermittent fan operation were approximately 1.5 to 1.8 times as much as compared with the continuous fan operation, but a few differences among year-to-year. 14. Required fan horsepower and energy for the intermittent fan operation were 3. 7 and 1. 5 times respectively as much as compared with the continuous fan operation. 15. The continuous fan operation may be more effective than the intermittent fan operation considering overdrying, fan horsepower requirements, and energy use. 16. A method for estimating the required collection area of flat-plate solar collector using average temperature rise and airflow rate was presented.

  • PDF

Simulation of Drying Grain with Solar-Heated Air (태양에너지를 이용한 곡물건조시스템의 시뮬레이션에 관한 연구)

  • Keum, Dong-Hyuk
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.64-64
    • /
    • 1979
  • Low-temperature drying systems have been extensively used for drying cereal grain such as shelled corn and wheat. Since the 1973 energy crisis, many researches have been conducted to apply solar energy as supplemental heat to natural air drying systems. However, little research on rough rice drying has been done in this area, especially very little in Korea. In designing a solar drying system, quality loss, airflow requirements, temperature rise of drying air, fan power and energy requirements should be throughly studied. The factors affecting solar drying systems are airflow rate, initial moisture content, the amount of heat added to drying air, fan operation method and the weather conditions. The major objectives of this study were to analyze the effects of the performance factors and determine design parameters such as airflow requirements, optimum bed depth, optimum temperature rise of drying air, fan operation method and collector size. Three hourly observations based on the 4-year weather data in Chuncheon area were used to simulate rough rice drying. The results can be summarized as follows: 1. The results of the statistical analysis indicated that the experimental and predicted values of the temperature rise of the air passing through the collector agreed well.2. Equilibrium moisture content was affected a little by airflow rate, but affected mainly by the amount of heat added, to drying air. Equilibrium moisture content ranged from 12.2 to 13.2 percent wet basis for the continuous fan operation, from 10.4 to 11.7 percent wet basis for the intermittent fan operation respectively, in range of 1. 6 to 5. 9 degrees Centigrade average temperature rise of drying air.3. Average moisture content when top layer was dried to 15 percent wet basis ranged from 13.1 to 13.9 percent wet basis for the continuous fan operation, from 11.9 to 13.4 percent wet basis for the intermittent fan operation respectively, in the range of 1.6 to 5.9 degrees Centigrade average temperature rise of drying air and 18 to 24 percent wet basis initial moisture content. The results indicated that grain was overdried with the intermittent fan operation in any range of temperature rise of drying air. Therefore, the continuous fan operation is usually more effective than the intermittent fan operation considering the overdrying.4. For the continuous fan operation, the average temperature rise of drying air may be limited to 2.2 to 3. 3 degrees Centigrade considering safe storage moisture level of 13.5 to 14 perceut wet basis.5. Required drying time decrease ranged from 40 to 50 percent each time the airflow rate was doubled and from 3.9 to 4.3 percent approximately for each one degrees Centigrade in average temperature rise of drying air regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on required drying time.6. Required drying time increase ranged from 18 to 30 percent approximately for each 2 percent increase in initial moisture content regardless of the fan operation methods, in the range of 18 to 24 percent moisture.7. The intermittent fan operation showed about 36 to 42 percent decrease in required drying time as compared with the continuous fan operation.8. Drymatter loss decrease ranged from 34 to 46 percent each time the airflow rate was doubled and from 2 to 3 percent approximately for each one degrees Centigrade in average temperature rise of drying air, regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on drymatter loss. 9. Drymatter loss increase ranged from 50 to 78 percent approximately for each 2 percent increase in initial moisture content, in the range of 18 to 24 percent moisture. 10. The intermittent fan operation: showed about 40 to 50 percent increase in drymatter loss as compared with the continuous fan operation and the increasing rate was higher at high level of initial moisture and average temperature rise.11. Year-to-year weather conditions had a little effect on required drying time and drymatter loss.12. The equations for estimating time required to dry top layer to 16 and 1536 wet basis and drymatter loss were derived as functions of the performance factors. by the least square method.13. Minimum airflow rates based on 0.5 percent drymatter loss were estimated.Minimum airflow rates for the intermittent fan operation were approximately 1.5 to 1.8 times as much as compared with the continuous fan operation, but a few differences among year-to-year.14. Required fan horsepower and energy for the intermittent fan operation were3. 7 and 1. 5 times respectively as much as compared with the continuous fan operation.15. The continuous fan operation may be more effective than the intermittent fan operation considering overdrying, fan horsepower requirements, and energy use.16. A method for estimating the required collection area of flat-plate solar collector using average temperature rise and airflow rate was presented.

A Study on Thermal Characteristics of Air Bearing System for High-Speed Spindle (고속 스핀들용 공기 베어링의 열 특성에 관한 연구)

  • 이득우;이종렬;김보언;안지훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1021-1026
    • /
    • 2000
  • The thermal characteristics of high-speed air spindle system with built-in motor are studied. Experiment and finite element method analysis obtain temperature rise and temperature distribution of housing. For the analysis three-dimensional model is built and temperature rise and distribution in thermal steady state are computed for each rotational frequency. Generally. It is said that the heat generation of air bearing is negligible. But it is certain that the heat generation of air bearing can not be negligible especially in high-speed conditions Frequency response test for air spindle system is executed. In case that the heat generation of air spindle system is high, natural frequency of the system becomes lower when it reaches thermal steady-state and it means that the stiffness of air hearing becomes smaller due to the change of bearing clearance. It is shown that the temperature rise of all spindle system causes thermal expansion md induces the variation of hearing clearance. In consequence the st illness of air bearing becomes smaller.

  • PDF

Analysis of Temperature Rise on the Air-Guide's Position of Wind Power Generator (풍력발전기 Air Guide 위치별 온도상승 해석)

  • Han, Chang-Woo;Kim, Hyun-Jae;Kweon, Ki-Yeoung;Lee, Hahk-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.282-285
    • /
    • 2008
  • In this paper, the numerical analysis of the model without air-guide was carried out in wind power generator. From numerical results, the temperature rise was not satisfied for the class F insulation and the non-uniformity of temperature distribution was a wide difference in heating elements. To improve these problems, the air-guide was installed in front of the coil head of non-drive end(NDE). The short distance between coil head and air-guide was more effective than long distance in cooling performance. Compared to that of the preliminary design, it was found that the cooling performance of the modification design was improved about 12%.

  • PDF

A Study on Inversion at Leeward Side of High-rise Building in Winter (동절기 고층건물 풍하면의 기온역전에 관한 연구)

  • Zheng, Hai-Yan;Jin, Wen-Cheng;Oh, Sung-Nam;Lee, Kyoo-Seock
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.6
    • /
    • pp.583-590
    • /
    • 2010
  • To determine nocturnal inversion characteristics at the leeward side of high-rise building, air temperature data were observed at 10 minute interval from February 22, 2010 to April 15, 2010. The observed data were compared, analyzed and examined to illustrate air temperature differences between the roof (XAR) and surface (XAG) of X apartment. The wind speed, wind direction and precipitation data were also observed at XAR and YJL (Yangjae Stream) sites at the same time. After the analysis, the maximum nocturnal inversion was observed by $4.0^{\circ}C$ at 3:40, 3:50, 4:10 on February 24th 2010, at that time the weather condition was clear and weak wind. Air temperature inversions at the leeward side of high-rise building were observed on whole day in wintertime and air temperature inversion intensity was also higher than other nearby area (SMG).

A study on the heat generation into air film as rotating of high speed journal in the air journal bearing (공기저어널 베어링에서 저어널의 고속회전시 공기유막내의 열발생에 관한 연구)

  • 이종열;성승학;이득우;박보선;김태영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.82-86
    • /
    • 2002
  • The thermal characteristics of high-speed air spindle system with built-in motor are studied. Experiment and finite difference method analysis obtain temperature rise and temperature distribution of housing. For the analysis, air fluid film model is built and temperature rise and distribution in thermal steady state are computed for each rotational speed. Generally, it is said that the heat generation of air bearing is negligible. But the heat generation in air film by heat dissipation can not be negligible especially into high-speed region of the journal. In case that the heat generation of air spindle system is high, natural frequency of the spindle system becomes lower when the thermal state is in steady-state and it means the changes of air bearing stiffness due to the change of bearing clearance. It is shown that the temperature rise of air spindle system causes thermal expansion and induces the variation of bearing clearance. In consequence the stiffness of air bearing becomes smaller.

  • PDF

The effects of various thermal parameters on coil temperature rise in TEFC induction motor (여러가지 열적 변수가 전폐형 유도전동기의 코일온도상승에 미치는 영향에 관한 연구)

  • Yun, Myeong-Geun;Ha, Gyeong-Pyo;Go, Sang-Geun;Lee, Yang-Su;Han, Song-Yeop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.570-578
    • /
    • 1997
  • At design stage of new motor or when taking remedial action of old motor, a lot of information can be obtained from thermal parameters analysis. This study focused on the temperature rise of TEFC induction motor with respect to various thermal parameters. Frame heat transfer had the most important effect on coil temperature rise. But those of air gap and rotor fan had no effect. This fact shows fan action is more important than fin action in the case of rotor fan. Coil temperature can be more decreased by cooling near the heat sources than any other parts from the results of thermal conductivity and loss tests. Variation of cooling air flow rate and motor volume effects on coil temperature were also tested. These tests suggest that improvement of cooling fan performance is important in reducing the coil temperature rise. Thermal equivalent program was verified by comparison of some experimental results.

Air Temperature Modification of an Urban Neighborhood Park in Summer - Hyowon Park, Suwon-si, Gyeonggi-do- (여름철 도시근린공원의 기온저감 효과 - 경기도 수원시 효원공원 -)

  • Park, Sookuk;Jo, Sangman;Hyun, Cheolji;Kong, Hak-Yang;Kim, Seunghyun;Shin, Youngkyu
    • Journal of Environmental Science International
    • /
    • v.26 no.9
    • /
    • pp.1057-1072
    • /
    • 2017
  • In order to investigate the effect of air temperature reduction on an urban neighborhood park, air temperature data from five inside locations (forest, pine tree, lawn, brick and pergola) depending on surface types and three outside locations (Suwon, Maetan and Kwonsun) depending on urban forms were collected during the summer 2016 and compared. The forest location had the lowest mean air temperature amongst all locations sampled, though the mean difference between this and the other four locations in the park was relatively small ($0.2-0.5^{\circ}C$). In the daytime, the greatest mean difference between the forest location and the two locations exposed to direct beam solar radiation (brick and lawn) was $0.5-0.8^{\circ}C$ (Max. $1.6-2.1^{\circ}C$). In the nighttime, the mean difference between the forest location and the other four locations in the park was small, though differences between the forest location and locations with grass cover (pine tree and lawn) reached a maximum of $0.9-1.7^{\circ}C$. Comparing air temperature between sunny and shaded locations, the shaded locations showed a maximum of $1.5^{\circ}C$ lower temperature in the daytime and $0.7^{\circ}C$ higher in the nighttime. Comparing the air temperature of the forest location with those of the residential (Kwonsun) and apartment (Maetan) locations, the mean air temperature difference was $0.8-1.0^{\circ}C$, higher than those measured between the forest location and the other park locations. The temperatures measured in the forest location were mean $0.9-1.3^{\circ}C$ (Max. $2.0-3.9^{\circ}C$) lower in the daytime than for the residential and apartment locations and mean $0.4-1.0^{\circ}C$ (Max. $1.3-3.1^{\circ}C$) lower in the nighttime. During the hottest period of each month, the difference was greater than the mean monthly differences, with temperatures in the residential and apartment locations mean $1.0-1.6^{\circ}C$ higher than those measured in the forest location. The effect of air temperature reduction on sampling locations within the park and a relatively high thermal environment on the urban sampling locations was clearly evident in the daytime, and the shading effect of trees in the forest location must be most effective. In the nighttime, areas with a high sky view factor and surface types with high evapotranspiration potential (e.g. grass) showed the maximum air temperature reduction. In the urban areas outside the park, the low-rise building area, with a high sky view factor, showed high air temperature due to the effect of solar (shortwave) radiation during the daytime, while in the nighttime the area with high-rise buildings, and hence a low sky view factor, showed high air temperature due to the effect of terrestrial (longwave) radiation emitted by surrounding high-rise building surfaces. The effect of air temperature reduction on the park with a high thermal environment in the city was clearly evident in the daytime, and the shading effect of trees in the forest location must be most effective. In the nighttime, areas with high sky view factor and surface types (e.g., grass) with evapotranspiration effect showed maximum air temperature reduction. In the urban areas outside the park, the high sky view factor area (low-rise building area) showed high air temperature due to the effect of solar (shortwave) radiation during the daytime, but in the nighttime the low sky view factor area (high-rise building area) showed high air temperature due to the effect of terrestrial (longwave) radiation emitted surrounding high-rise building surfaces.