• 제목/요약/키워드: Air Sweep-out

검색결과 7건 처리시간 0.02초

파력발전용 웰즈터빈성능에 미치는 날개 Sweep의 영향 (Effect of Blade Sweep on the Performance of the Wells Turbine for Wave Power Conversion)

  • 김태호;뢰호구준명;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.961-966
    • /
    • 2001
  • The Wells turbine is one of the simplest and most promising self-rectifying air turbines which are useful for the systems of alternative energy development in near future, and it is economically desirable from the point of view of the practical use, as well. To investigate the effect of blade sweep on the performance of the Wells turbine, computations of a fully 3-D Navier-Stokes are carried out under steady flow conditions of NACA0020 blade. It is known that the performance of the Wells turbine is considerably influenced by the blade sweep. An optimum blade sweep ratio(f=0.35) for the NACA0020 is found to be the most promising for the practical use, and this value is in good agreement with the previous experiments. It is also found that the overall turbine performance for the NACA0020 is better than that for the CA9.

  • PDF

INVESTIGATION ON EFFECTS OF ENLARGED PIPE RUPTURE SIZE AND AIR PENETRATION TIMING IN REAL-SCALE EXPERIMENT OF SIPHON BREAKER

  • Kang, Soon Ho;Lee, Kwon-Yeong;Lee, Gi Cheol;Kim, Seong Hoon;Chi, Dae Young;Seo, Kyoungwoo;Yoon, Juhyeon;Kim, Moo Hwan;Park, Hyun Sun
    • Nuclear Engineering and Technology
    • /
    • 제46권6호
    • /
    • pp.817-824
    • /
    • 2014
  • To ensure the safety of research reactors, the water level must be maintained above the required height. When a pipe ruptures, the siphon phenomenon causes continuous loss of coolant until the hydraulic head is removed. To protect the reactor core from this kind of accident, a siphon breaker has been suggested as a passive safety device. This study mainly focused on two variables: the size of the pipe rupture and the timing of air entrainment. In this study, the size of the pipe rupture was increased to the guillotine break case. There was a region in which a larger pipe rupture did not need a larger siphon breaker, and the water flow rate was related to the size of the pipe rupture and affected the residual water quantity. The timing of air entrainment was predicted to influence residual water level. However, the residual water level was not affected by the timing of air entrainment. The experimental cases, which showed the characteristic of partical sweep-out mode in the separation of siphon breaking phenomenon [2], showed almost same trend of physical properties.

국소적 초음파 가진이 난류경계층에 미치는 영향 (Influence of Local Ultrasonic Forcing on a Turbulent Boundary layer)

  • 박영수;성형진
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2005년도 추계학술대회 논문집
    • /
    • pp.17-22
    • /
    • 2005
  • An experimental study was carried out to investigate the effect of local ultrasonic forcing on a turbulent boundary layer. Stereoscopic particle image velocimetry (SPIV) was used to probe the characteristics of the flow. A ultrasonic forcing system was made by adhering six ultrasonic transducers to the local flat plate. Cavitation which generates uncountable minute air-bubbles having fast wall normal velocity occurs when ultrasonic was projected into water. The SPIV results showed that the wall normal mean velocity is increased in a boundary layer dramatically and the streamwise mean velocity is reduced. The skin friction coefficient ($C_{f}$) decreases $60\%$ and gradually recovers at the downstream. The ultrasonic forcing reduces wall-region streamwise turbulent intensity, however, streamwise turbulent intensity is increased away from the wall. Wall-normal turbulent intensity is almost the same near the wall but it increases away from the wall, In tile vicinity of the wall, Reynold shear stress, sweep strength and production of turbulent kinetic energy were decreased. This suggests that the streamwise vortical structures are lifted by ultrasonic forcing and then skin friction is reduced.

  • PDF

표면처리 공정에서 발생하는 혼합 폐수의 전기화학적 처리에 의한 중금속의 재활용 및 유기물의 제거에 관한 연구 (A Study on the Recycling of Metals and Removal of Organics By Electrochemical Treatment of Mixed Waste Water of Surface Finishing Industry)

  • 김영석;이중배
    • 한국표면공학회지
    • /
    • 제36권2호
    • /
    • pp.184-193
    • /
    • 2003
  • Cyclic sweep voltametry was performed to investigate the electrochemical behavior of heavy metal ions and the organic additives in surface finishing process. And electrolysis using parallel plate electrode electrolyzer was carried out to simulate the treatment of real waste water. Results showed that more than 99 percent of Cu was recovered and selective recovery of Cu in mixed waste water was possible, but the possibility of economical recovery of Ni and Cr were very low due to the evolution of hydrogen gas. Electrochemical oxidation of cyanide and organic additives on anode showed very excellent removal rate. The complete removal of several hundred ppm of cynide was possible within several tens minutes and organics within 2 or 3 hours. Even in case of concentrate waste water, the complete removal of COD by using NaCl and air stirring seemed to be possible.

국소적 초음파 가진이 난류경계층에 미치는 영향 (Influence of Local Ultrasonic Forcing on a Turbulent Boundary Layer)

  • 박영수;성형진
    • 한국가시화정보학회지
    • /
    • 제3권1호
    • /
    • pp.78-89
    • /
    • 2005
  • An experimental study was carried out to investigate the effect of local ultrasonic forcing on a turbulent boundary layer. Stereoscopic particle image velocimetry (SPIV) was used to probe the characteristics of the flow. A ultrasonic forcing system was made by adhering six ultrasonic transducers to the local flat plate. Cavitation which generates uncountable minute air-bubbles having fast wall normal velocity occurs when ultrasonic was projected into water. The SPIV results showed that the wall normal mean velocity is increased in a boundary layer dramatically and the streamwise mean velocity is reduced. The skin friction coefficient (C$_{f}$) decreases 60$\%$and gradually recovers at the downstream. The ultrasonic forcing reduces wall-region streamwise turbulent intensity, however, streamwise turbulent intensity is increased away from the wall. Wall-normal turbulent intensity is almost the same near the wall but it increases away from the wall. In the vicinity of the wall, Reynold shear stress, sweep strength and production of turbulent kinetic energy were decreased. This suggests that the streamwise vortical structures are lifted by ultrasonic forcing and then skin friction is reduced.

  • PDF

낙엽송 소경재(小徑材)의 제재이용구조(製材利用構造)에 관(關)한 연구(硏究) (A Study on Sawing and Utilization Structure of Lumber from Small - diameter Logs of Larix leptolepis)

  • 이춘택;김수창
    • Journal of the Korean Wood Science and Technology
    • /
    • 제18권3호
    • /
    • pp.53-68
    • /
    • 1990
  • This research has been executed for maximization of lumber yield and more efficient use of small diameter logs. Sample logs from thinnings carne from densed artificial stands at the Kwangnung Experimental Forests situated in the central region of Korean peninsula. Species of sample logs were obtained to execute sawing and strength test for larch, and lumber strength test in full size for pitch pine and Korean pine. A survey on sawmills consuming domestic logs was carried out to know sawmill production, costs and utilization structure of lumber as a guide to business analysis. Results showed that sawing pattern from small logs less than 15cm in diameter was necessary to cut 9cm by 9cm square per one log in order to obtain high lumber recovery and provide for wide market needs. The total lumber yield of squares plus side boards was 56 percent to 58 percent from small logs and the yield for log sweep in 30 percent decreased by 24.5 percent in sawing production, compared to yield for straight logs. In sawing efficiency, production of lumber by twin band saw could be improved 238 percent higher than lumber of the same species produced by conventional sawmilling methods, and sawing accuracy with twin band saw was much higher at the lumber production than band saw. Lumber from the small larch logs has shown 70 knots per $m^2$ on its faces and also lumber showed lots of face checkings by air drying on the yard, compared to other species. MOR in bending of lumber in full size from small logs of larch was found ranging from 380kg/$cm^2$ to 460kg/$cm^2$, resulting in 40 percent less than the strength from clear small specimens. In lumber containing knots, cross grain, etc, longitudinal stress wave speed was delayed about 48 percent by defects in lumber from both larch and pitch pine logs. The surveyed sample sawmills consumed the domestic logs at the rate of 54 percent to 84 percent in the total timber consumption, showing high consumption at mills located in the mountains.

  • PDF

Study on the Systematic Technology of Promoting Purification for the Livestock Wastewater and Reuse

  • Okada, Yoshiichi;Shim, Jae-Do;Mitarai, Masahumi;Kojima, Takayuki;Gejima, Yoshinori
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.692-700
    • /
    • 1996
  • The objective of this study is to develop a systematic purification plant using the metabolism of aerobic microorganisms. This system is subsequently aerated and continuously removes suspended solids and settling sludges caused by aerating pressure at the bottom of a lower pipe (i.e., Continuous Removal of Suspended solids and Settling sludges, CRSS). The CRSS plants are brought out by introducing fine air bubbles into the liquid phase of a lower pipe in the bio-reactor. These plant uses aeration pipe, with multiple inlets to sweep the floor of bio-reactor tank, instead of the conventional scraper mechanisms. The principal advantage of this system is that it can continuously remove very small or light particles that settles completely within a short time. Once the particles have been floated to the surface, they can be moved into the pipe and collected in the settling tank by sequently aerated pressure. The experimental results shows that about 99.0% of the biochemical oxygen demand(BOD), 99.3% of the suspended solid(SS), 92.3% of the total nitrogen(T-N), 99.0% of the turbidity(TU), 100% of the total coliform(TC)and ammonia was respectively removed during aerobic digestion for 9 days. These result indicates that the CRS S plants are very effective for reduction and deodorization of swine wastewater contaminants, and the efflux from CRS S can either be discharged in the river or used as nutrient solution of formulation for plant growth factories. The developed CRSS plant proved to be flexible and it can simply be adapted to any type of biological waste treatment problem.roblem.

  • PDF