• Title/Summary/Keyword: Air Suspension

Search Result 206, Processing Time 0.023 seconds

Stability of the axially compliant fixed scroll in scroll compressors (스크롤 압축기에서 축방향 순응하는 고정부재의 안정성)

  • Kim, H.J.;Lee, W.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.93-103
    • /
    • 1997
  • This study presents a way of improving the stability of fixed scroll in scroll compressors. For the scroll compressor whose fixed scroll is designed to move in the axial direction for the axial compliance, the fixed scroll is under the influence of the overturning moment produced by internal gas forces. Unless the overturning moment is properly compensated by the moments of reaction forces at the suspension of the fixed scroll to the compressor frame, the fixed scroll would exhibit wobbling motion, increasing gas leakage through the gap induced by the wobbling of the fixed scroll between the two scroll members. The conditions on which the wobbling motion can be suppressed have been found analytically; The axial position of the fixed scroll suspension should be made within a certain range. The upper limit of this range is the axial location for the o-rings which are inserted between the fixed scroll and the back pressure chamber to promote sealing for the gas in the back pressure chamber. And the lower limit is mainly determined by the magnitude of the axial sealing force. As long as the axial sealing force is not negative over all crank angles, the lower limit is not above the mid-height of the scroll wrap. Larger axial sealing force lower the lower limit.

  • PDF

Load/Unload Dynamics of Slider on Ramp for Various Ramp Shape (램프 형상에 대한 램프 상의 로드/언로드 동특성 해석)

  • Lee, Yong-Hyun;Park, Kyoung-Su;Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.467-472
    • /
    • 2005
  • Load/Unload(L/UL) technology includes the benefits, that is, increased areal density, reduced power consumption and improved shock resistance contrary to contact start stop(CSS). It has been widely used in portable hard disk drive and will become the key technology for developing the small form factor hard disk drive. The main objectives of L/UL are no slider disk contact or no media damage. For realizing those, we must consider many design parameters in L/UL systems. In this paper, we focus on the effect of the ramp profile. We can find out the lateral velocities in L/UL process through experiments and simulations for force of voice coil motor and friction force on ramp. And then, we will gain the optimal design of ramp slope to maintain the minimum clearance of suspension dimple and slider with FE model. In special, after finding the point at which air bearing breaks and designing the ramp, we will identify the results for improving unload performance.

  • PDF

Dynamic interaction analysis of actively controlled maglev vehicles and guideway girders considering nonlinear electromagnetic forces

  • Min, Dong-Ju;Lee, Jun-Seok;Kim, Moon-Young
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.39-57
    • /
    • 2012
  • This study intends to explore dynamic interaction behaviors between actively controlled maglev vehicle and guideway girders by considering the nonlinear forms of electromagnetic force and current exactly. For this, governing equations for the maglev vehicle with ten degrees of freedom are derived by considering the nonlinear equation of electromagnetic force, surface irregularity, and the deflection of the guideway girder. Next, equations of motion of the guideway girder, based on the mode superposition method, are obtained by applying the UTM-01 control algorithm for electromagnetic suspension to make the maglev vehicle system stable. Finally, the numerical studies under various conditions are carried out to investigate the dynamic characteristics of the maglev system based on consideration of the linear and nonlinear electromagnetic forces. From numerical simulation, it is observed that the dynamic responses between nonlinear and linear analysis make little difference in the stable region. But unstable responses in nonlinear analysis under poor conditions can sometimes be obtained because the nominal air-gap is too small to control the maglev vehicle stably. However, it is demonstrated that this unstable phenomenon can be removed by making the nominal air-gap related to electromagnetic force larger. Consequently it is judged that the nonlinear analysis method considering the nonlinear equations of electromagnetic force and current can provide more realistic solutions than the linear analysis.

Vibration Reduction of a Large-sized Bus Roof through Change of the Factors Characteristics (인자 특성 변화를 통한 대형버스의 루프 진동 저감)

  • Kuk, Jong-Young;Park, Jong-Chan;Lim, Jung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.138-144
    • /
    • 2010
  • If the vibration is occurred in a large-sized bus roof, it makes people annoying and complaining the quality of a large-sized bus. So in design stage, it must be considered. To assess vibration at the roof which is equipped with air conditioner in design stage, finite element model is constructed. Computer simulation analysis and experimental method are performed. The dynamic characteristics of the large-sized bus are found by using eigenvalue method. It is related with dynamic behavior. The running conditions of a large-sized bus are velocity and road condition which followed experimental conditions. And the frequency response of a large-sized bus is well correlated with analysis result. Modal participation method is used for finding major modes at each peak. Using this method, we found that front and rear suspension system, engine mounting system and roof structure are the major reasons of the roof vibration. To reduce vibration level of roof in a large-sized bus, spring stiffness of front and rear suspension system, spring stiffness of engine mounting system and roof structure are properly combined. From this study, the vibration characteristics of the roof structure of a large-sized bus can be to a satisfactory level.

Study of Failure Examples of Automotive Electronic Control Suspension System Including Cases with Wiring Disconnection and Air Leakage (배선 단선과 에어 누설에 관련된 자동차 ECS 시스템의 고장사례 고찰)

  • Lee, Il Kwon;Park, Jong Geon;Shin, Myung Shin;Jang, Joo Sup
    • Tribology and Lubricants
    • /
    • v.29 no.3
    • /
    • pp.180-185
    • /
    • 2013
  • The purpose of this study was to analyze the tribological characteristics of the Electronic control suspension System in a car. In the first example, the cilp used to attach the front electronic control suspension(ECS) system's control actuator was fastened very tightly. Thus, the wire was cut because of continual rotation of the shock-up shover piston rod used to adjust the height of the car. This verified the disconnection phenomenon where wire damaged makes it impossible for the ECS system to send signal to the actuator. The second example, involved a minute hole that allowed gas to leak from the ECS system. As a result, the height of the car verified the down phenomenon. In the third example, the resistance of a wire measured at $0.21{\Omega}$, when the G sensor was disconnected from the system. This verified the system shutdown and lighting of the ECS warning lamp because of body interference caused by a slight pressure on the battery cover. Therefore, quality control is always necessary to ensure safety and durability of a car.

Integrated Optimal Design for Suspension to Improve Load/unload Performance (로드/언로드 성능향상을 위한 서스팬션의 구조최적화)

  • Kim Ki-Hoon;Son Suk-Ho;Park Kyoung-Su;Yoon Sang-Joon;Park No-Cheol;Yang Hyun-Seok;Choi Dong-Hoon;Park Young-pil
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.204-209
    • /
    • 2005
  • Load/Unload(L/UL) technology includes the benefits, that is, increased areal density, reduced power consumption and improved shock resistance contrary to contact-start-stop(CSS). It has been widely used in portable hard disk drive and will become the key technology far developing the small form factor hard disk drive. The main object of L/UL is no slider-disk contact or no media damage. For realizing those, we must consider many design parameters in L/UL system. In this paper, we focus on lift-off force. The 'lift-off' force, defined as the minimum air bearing force, is another very important indicator of unloading performance. A large amplitude of lift-off force increases the ramp force, the unloading time, the slider oscillation and contact-possibility. To minimize 'lift-off' force we optimizes the slider and suspension using the integrated optimization frame, which automatically integrates the analysis with the optimization and effectively implements the repetitive works between them. In particular, this study is carried out the optimal design considering the process of modes tracking through the entire optimization processes. As a result, we yield the equation which can easily find a lift-off force and structural optimization for suspension.

  • PDF

Effects of Carbon Fiber on Mechanical Behaviour of Al2O3 Porous Ceramics

  • Basnet, Bijay;Lim, Hyung Mi;Lee, Kee Sung;Kim, Ik Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.513-520
    • /
    • 2019
  • This study reports the improvement of mechanical properties of Al2O3 porous ceramics from colloidal suspension with the addition of carbon fiber by direct foaming. The initial colloidal suspension of Al2O3 was partially hydrophobized by surfactant to stabilize wet foam with the addition of carbon fiber from 2 to 8 wt% as stabilizer. The influence of carbon fiber on the air content, bubble size, pore size and pore distribution in terms of wet foam stability and physical properties of porous ceramics were discussed. The viscosity of the colloidal suspension was increased giving solid like properties with the increased in carbon fiber content. The mechanical properties of the sintered porous samples were investigated by Hertzian indentation test. The results show the wet foam stability of more than 90% corresponds to compressive loading of 156.48 N and elastic modulus of 57.44 MPa of sintered sample with 8 wt% of carbon fiber content.

Evaluation of Characteristics of Cord Reinforced Air Spring for Railroad Vehicle (철도차량용 코드강화 공기스프링의 특성 평가)

  • Kim, Wan-Doo;Hur, Shin;Lee, Hak-Joo;Kim, Suk-Won;Kim, Young-Gu
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.3
    • /
    • pp.109-116
    • /
    • 2000
  • An air spring which is a part of the railroad vehicle suspension system is used to reduce and absorb the vibration and the noise. Main components of the air spring are a cord reinforced rubber bellows, a upper plate, a lower plate and a stopper rubber spring. The characteristics of the air spring which are the load capacity, the vertical and the horizontal stiffness are determined by the configuration of the rubber bellows, the angle of cord, and the mechanical properties of cord. Computer simulations using a commercial finite element analysis codes are executed to predict and evaluate the load capacity and the stiffness. The appropriate shape and cord angle of the air spring are selected to meet the required specifications of the air spring. Several samples of the air spring are manufactured and experimentally evaluated. It is shown that the results by computer simulation arc in close agreement with the test results.

  • PDF

Effect of Bogie Frame Flexibility on Air Gap in the Maglev Vehicle with a Feedback Control System

  • Kim, Ki-Jung;Han, Hyung-Suk;Kim, Chang-Hyun;Yang, Seok-Jo
    • International Journal of Railway
    • /
    • v.4 no.4
    • /
    • pp.97-102
    • /
    • 2011
  • In an EMS (Electromagnetic suspension)-type Maglev (Magnetically-levitated) vehicle, the flexibility of the bogie frame may affect the acceleration of the electromagnet that is input into the control system, which could lead to instability in some cases. For this reason, it is desirable to consider bogie frame flexibility in air gap simulations, for the optimization of bogie structure. The objective of this paper is to develop a flexible multibody dynamic model of 1/2 of an EMS-type Maglev vehicle that is under testing, and to compare the air gap responses obtained from the rigid and the flexible body model. The feedback control system and electromagnet models that are unique to the EMS-type maglev vehicle must be included in the model. With this model, dynamics simulations are carried out to predict the air gap responses from the two models, of the rigid and flexible model, and the air gaps are compared. Such a comparative study could be useful in the prediction of the air gap in the design stage, and in designing an air gap control system.

  • PDF

A Case of Intralaryngeal Metallic Foreign Body which Penetrated by Transcutaneous Route (경부를 관통한 후두 내 금속이물 1예)

  • 최지훈;우정수;이승훈;이흥만
    • Korean Journal of Bronchoesophagology
    • /
    • v.9 no.1
    • /
    • pp.92-95
    • /
    • 2003
  • Laryngeal foreign bodies are not common among the foreign bodies of aerodigestive tract. It is relatively easy to diagnose in acute phase of entry because of a readily\ulcorner available history of intake, and signs or symptoms referable to the foreign body in the highly sensitive air passage. However, on occasion, sudden death by respiratory failure occurs due to complete obstruction of airway. Therefore, it is common and safe to remove the laryngeal foreign bodies by suspension laryngoscope under general anesthesia after tracheostomy. Recently, the authors experienced a case of metallic foreign body in larynx penetrating neck, which was removed by suspension laryngoscope under general anesthesia without any life threatening complication.

  • PDF