• Title/Summary/Keyword: Air Supplement

Search Result 103, Processing Time 0.018 seconds

Effects of Embryo Density on Development of In Vitro Produced Bovine Embryos (수정란의 밀도가 소 체외수정란의 체외발달에 미치는 효과)

  • 송상현;박충생
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.1
    • /
    • pp.69-76
    • /
    • 2000
  • This study was carried out to improve of effective culture system on development of IVM/IVF/IVC bovine embryos. The cumulus-oocyte-complexes (COCs) collected from Korean cattle ovaries harvested at a local abattoir were matured in 50 ${mu}ell$ of TCM199 supplemented with 10% fetal bovine serum (FBS) and hormones (35 $\mu\textrm{g}$/$m\ell$ FSH, 10 $\mu\textrm{g}$/$m\ell$ LH, 1$\mu\textrm{g}$/$m\ell$ estradiol 17 $\beta$ under paraffin oil at 39$^{\circ}C$ in a humidified atmosphere of 5% $CO_2$in air. At 24 hrs after culture, matured oocytes were fertilized in vitro for 22~24 hrs with motile semen in which obtained by centrifugation of a frozen thawed semen on Percoll-density gradients (45% vs. 90%) at 500 g for 20 min. The presumptive zygotes were divided into three experimental groups. Single egg (Group 1), 25 (Group 2) or 50 eggs (Group 3) were cultured on cumulus cell in 50 ${mu}ell$ TCM199 supplement with 10% FBS for 6~9 days after fertilization. In vitro developmental rates into the blastocysts in the groups 2 and 3 were significantly (P<0.05) higher than those of group 1 (37,27 vs. 6%, respectively). Cell number of blastocysts obtained in groups 2 and 3 at day 8 were significantly (P${mu}ell$) resulted in higher developmental competence and cell number of bovine blastocysts produced in vitro than those the culture of single embryos with cumulus cells.

  • PDF

Distribution and Behavior of $^{137}Cs$ According to topography and nature of the soil around Yeong-Gwang NPPs, (영광원자력발전소 주변의 지형 및 지질에 따른 $^{137}Cs$ 분포 및 거동에 관한 연구)

  • Han Sang-Jun;Lee Goung-Jin;Kim Hee-Geun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.4
    • /
    • pp.271-278
    • /
    • 2004
  • This paper shows our experiment is performed to understand the exposure tendency of $^{137}Cs$ according to the height of area and also, to supplement it by considering chemical characters of $^{137}Cs$ exposed to the soil. The samples we use for this experiment are from the general flat area of Yeonggwang county where it has NPPs, the high places of Keumjung & Bulgap mountains, and Naejan mountain where it is quite far from the NPPs. The data from this experiment show that the exposure of $^{137}Cs$ is not harmful since its range is around 252 Bq/kg-dry in most of sampled soils such as from the general flat area, the high place of Keumjung mountain where is 2 km away from the NPPs, the other high place of Bulgap mountain where is about 20 km away from the NPPs, and Naejan mountain where it is far from the NPPs. Not like the general flat area, however, the data show that the higher the area is the more $^{137}Cs$ is exposed. That is, at the top of mountains, the more $^{137}Cs$ is exposed compared to at the bottom area. It is almost $2{\~}6$ times more than the general flat area of Yeonggwang county where it has NPPs. The data also show that the spread of $^{137}Cs$ is deeply related to the geographical(the height of area, rainfall, etc..) factors and chemical factors of soils. As the geographical factors, there are far more chances to be exposed of $^{137}Cs$ at the high area of mountains through the air compared to at lower area and therefore, we can get more high-leveled readings of $^{137}Cs$ at the high area while it is low-leveled ones at the general flat area even if both of them have the same soil conditions. Regarding the chemical factors of soil, it is clarified that the CEC is the key factor. The CEC means the capability of sticking $^{137}Cs$ accumulated into the soil. Hence, the more CEC it has the more high-leveled readings of $^{137}Cs$ we get under the same geographical condition.

  • PDF

The Comparative Understanding between Red Ginseng and White Ginsengs, Processed Ginsengs (Panax ginseng C. A. Meyer) (홍삼과 백삼의 비교 고찰)

  • Nam, Ki-Yeul
    • Journal of Ginseng Research
    • /
    • v.29 no.1
    • /
    • pp.1-18
    • /
    • 2005
  • Ginseng Radix, the root of Panax ginseng C. A. Meyer has been used in Eastern Asia for 2000 years as a tonic and restorative, promoting health and longevity. Two varieties are commercially available: white ginseng(Ginseng Radix Alba) is produced by air-drying the root, while red ginseng(Ginseng Radix Rubra) is produced by steaming the root followed by drying. These two varieties of different processing have somewhat differences by heat processing between them. During the heat processing for preparing red ginseng, it has been found to exhibit inactivation of catabolic enzymes, thereby preventing deterioration of ginseng quality and the increased antioxidant-like substances which inhibit lipid peroxide formation, and also good gastro-intestinal absorption by gelatinization of starch. Moreover, studies of changes in ginsenosides composition due to different processing of ginseng roots have been undertaken. The results obtained showed that red ginseng differ from white ginseng due to the lack of acidic malonyl-ginsenosides. The heating procedure in red ginseng was proved to degrade the thermally unstable malonyl-ginsenoside into corresponding netural ginsenosides. Also the steaming process of red ginseng causes degradation or transformation of neutral ginsenosides. Ginsenosides $Rh_2,\;Rh_4,\;Rs_3,\;Rs_4\;and\;Rg_5$, found only in red ginseng, have been known to be hydrolyzed products derived from original saponin by heat processing, responsible for inhibitory effects on the growth of cancer cells through the induction of apoptosis. 20(S)-ginsenoside $Rg_3$ was also formed in red ginseng and was shown to exhibit vasorelaxation properties, antimetastatic activities, and anti-platelet aggregation activity. Recently, steamed red ginseng at high temperature was shown to provide enhance the yield of ginsenosides $Rg_3\;and\;Rg_5$ characteristic of red ginseng Additionally, one of non-saponin constituents, panaxytriol, was found to be structually transformed from polyacetylenic alcohol(panaxydol) showing cytotoxicity during the preparation of red ginseng and also maltol, antioxidant maillard product, from maltose and arginyl-fructosyl-glucose, amino acid derivative, from arginine and maltose. In regard to the in vitro and in vivo comparative biological activities, red ginseng was reported to show more potent activities on the antioxidant effect, anticarcinogenic effect and ameliorative effect on blood circulation than those of white ginseng. In oriental medicine, the ability of red ginseng to supplement the vacancy(허) was known to be relatively stronger than that of white ginseng, but very few are known on its comparative clinical studies. Further investigation on the preclinical and clinical experiments are needed to show the differences of indications and efficacies between red and white ginsengs on the basis of oriental medicines.