• 제목/요약/키워드: Air Quality Measurement System

Search Result 153, Processing Time 1.327 seconds

Development of Wireless Respiratory Air Flow and Urinary Flow Measurement System for Home Healthcare (가정용 무선 호흡기류 및 요속신호 계측 시스템 개발)

  • Cha, Eun-Jong;Lee, In-Kwang;Lee, You-Mi;Han, Soon-Wha;Han, Jeong-Su;Suh, Jae-Won;Park, Chan-Sik;Kim, Kyung-Ah
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1350-1357
    • /
    • 2012
  • Medical system for personal health management recently changes its paradigm from hospital service to self home care based on ubiquitous technology for healthcare anywhere at any time. The present study developed a wireless bio-signal measurement system for patients to self manage pulmonary disease and benign prostate hyperplasia(BPH), both of which are chronic diseases with increasing frequency in modern society. Velocity-type respiratory air flow transducer adapted to develop respiratory module for pulmonary disease management was simplified in structure to measure uni-directional flow since most important diagnostic parameters are evaluated on the expiratory flow signal only. Standard weight measurement technique was introduced to obtain urinary flow signal for BPH management. Three load cell signals were acquired for averaging to minimize noise, followed by accuracy evaluation. Transmission and receiver modules were also developed with user program for wireless communication. Averaged relative errors were 2.05 and 1.02% for respiratory volume and maximal flow rate, respectively, and the relative error was 2.17% for urinary volume, demonstrating that both modules enabled very accurate measurements. Wireless communication distance was verified within 15m, long enough for home care application. The present system allows the user to select a necessary measurement module on a particular health demand and to immediately provide the self-test results, thus better quality health care would be possible.

Simulation and Health Risk Evaluation of Indoor Air Quality Changes by Ventilation System in New Apartment (신축아파트 환기방식에 따른 실내공기질 변화와 이에 대한 시뮬레이션 및 건강 위해성 평가)

  • Bao, Wei;Jung, Jaeyoun;Jeong, Insoo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.23 no.4
    • /
    • pp.38-45
    • /
    • 2021
  • In this study, air quality conditions were identified and analyzed in real time, at the same time, living habits and ventilation methods were maintained in the daily life of residents, and thus, this present study focuses on the lifestyles of residents. Previous studies showed a difference from this study, focusing on the study on the effects of changes in indoor air quality on human health according to the indoor air quality process test standards of the Ministry of Environment. Formaldehyde concentrations exceeded all ventilation standards, but satisfied the organic standards of the Ministry of Environment when ventilation devices and air purifiers were activated. As such, it was investigated that a large amount of formaldehyde emission in the condo is initially ventilated, but a certain concentration is maintained. The change in PM2.5 concentration according to the ventilation method showed a clear difference. As a result of simulating indoor air flow during natural ventilation, the effects of wind speed and wind direction affect the flow rate of indoor air, and indoor polluted air is stagnant even in the presence of wind and is not completely discharged. When the risk assessment results are averaged on the day of measurement, the trends of change between adults and children are almost equivalent, but the results address that children are more sensitive to risk than adults.

A Study on the Automatic Measurement of Solid Content in Recycled Water in Ready Mixed Concrete Plant (레디믹스트 콘크리트 플랜트의 회수수 농도 측정 자동화에 관한 연구)

  • Choi, Young-Cheol;Moon, Gyu-Don;Cho, Bong-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.123-131
    • /
    • 2014
  • Whole amount of waste water, approximately 921.6 liter, for cleaning a ready mixed concrete truck should be used to produce concrete as a mixing water or cleaning water. Recycling water for concrete mixing contains solids, which cause decrease in slump, air and compressive strengths, so it may influence on poor concrete quality. Therefore, it has been maintained to use recycling water with less than 3 percent of solids. Since no evaluation system has been constructed to directly reflect on variability of recycling water from ready mixed concrete plants, it is necessary to develop "Automatic recycling solid measuring system" for quality controls in real time. In this research, sensors measuring waste water concentration in ultrasonic and inductance methods were developed, and automatic system using the sensors were established. The accuracy of measurement sensors developed for recycling water based on various conditions of concentration was proved, and application limits were evaluated. Also, concentration of recycling water using sensors developed from ready mixed concrete plant was measured, and curing method verified the accuracy of the sensors. Moreover, measurement sensors for recycling water in various locations were installed to evaluate the effects on measuring method and spots. The automatic measuring system for recycling water concentration, which is developed in the research, will contribute to improve concrete quality safety through reliable solids maintenance.

A study on Forced Ventilation Rate for Bedroom Indoor Air Quality Improvement (침실 공기질 개선을 위한 강제 환기횟수에 관한 연구)

  • Kim, Dong-Gyu;Lee, Sung;Kim, Se-Hwan
    • KIEAE Journal
    • /
    • v.9 no.1
    • /
    • pp.85-90
    • /
    • 2009
  • The indoor air quality is one of the most important issues of designing ventilation in high rise apartment buildings. This study suggested proper ventilation rate in the apartment bedroom where mechanical ventilation system has installed. Six university students(four male and two female) were participating in the experiment. Experiments were performed in environmental chamber. Experimental conditions were combinations from three ventilation rate 0, 0.4 and 0.7. Measurement items during 8 hours of experimental time were temperature, humidity, carbon dioxide concentrations and questionnaire surveyed aftrer sleeping. The concentration of Carbon Dioxide depending on ventilation rate in the chamber was analyzed for proper ventilation rate. The results of this paper can be summarized as follows. (1) When two persons experiment, 0.7 ventilation rate was in excess of 1000ppm. (2) When one person experiment, 0.7 and 0.4 ventilation rates were satisfied the criteria of IAQ. (3) It compared 0.4 with 0.7 in the ventilation rate, 0.4 ventilation rate could reduced about 80% of the power by fan similarity law.

Evaluation on Indoor Air Quality by Statistical Analysis of Indoor Air Pollutants Concentration in a Seoul Metropolitan Underground Railway Station (서울시 지하역사 실내오염물질 농도자료의 통계분석을 통한 실내공기질 특성 평가)

  • Yim, Bongbeen;Lee, Kyusung;Kim, Jooin;Hong, Hyunsu;Kim, Jangwon;Jo, Kyung-Ho;Jung, Eulgyu;Kim, Inkyu;An, Yeonsun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.3
    • /
    • pp.233-244
    • /
    • 2014
  • The objective of this study was to explore the characteristics of concentration of indoor air pollutants, such as $PM_{10}$, $CO_2$, and $NO_2$, measured by tele-monitoring system in a Seoul Metropolitan underground railway station from January 1, 2008 to December 31, 2012. The annual average concentration of indoor air pollutants actually varied over a wide range and was found to exhibit marked variation with time and measurement sites (tunnel inlet, platform, and concourse). After installing platform screen doors, the average $PM_{10}$ concentration on platform and concourse was decreased by 43.8% and 31.2%, respectively during the study periods. The relationship between the concentration of $PM_{10}$ and meteorological parameters (relative humidity and rainfall) or the Asian dust events was regarded as statistically significant. The correlations between the number of boarding/alighting passengers and $PM_{10}$, $CO_2$, and $NO_2$ were calculated. A p-value of less than 0.01 was regarded as significant except $NO_2$. The I/O ratio of $PM_{10}$ concentration was elevated after a congested time (about 08:00 am). The average I/O ratios of $NO_2$ were observed in concourse and platform on 03:00 am with $1.76{\pm}0.91$ and $1.50{\pm}0.51$, respectively. The average daily variation of standard excess rate of $PM_{10}$ and $NO_2$ concentration in concourse and platform was investigated. The highest standard excess rate was observed on 21:00 (09:00 pm).

Evaluation of Indoor Environment Characteristics through Field Measurement in Large-sized Discount Stores (현장측정을 통한 대형 할인매장의 실내환경 평가)

  • Park Byung-Yoon;Jung Yong-Ho;Ham Heung Don;Sohn Jang-Yeul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.863-872
    • /
    • 2005
  • It is important to control indoor environment for influence on health and comfort of occupants in large-sized discount stores. On the other hand large-sized discount stores have a large number of visitors, vestibules, open spaces, high energy consumption and increasing of outside air intake. This study aims to offer the design data of building services system that can save energy and control environment through field measurement selecting two large-sized discount stores. Indoor environment factors such as temperature, relative humidity, air velocity and concentrations of $CO_2$, CO gas and TSP were measured and evaluated. In each case of $CO_2$, and CO gas, its maximum values were 2,800 ppm and 20 ppm. So proper strategy for the indoor air quality is indispensable in this type of building. Dry bulb temperature varies from $18^{\circ}C$ to $28^{\circ}C$ according to a measuring point and time. From this results, it is inferred these buildings had excessive equipment capacity. In terms of economical and environmental points, these data will be utilized to the design of HVAC system of retail facilities.

A Study on the Actual Measurement of Air Pollutants from a Diesel Engine of Ship (선박 디젤 엔진에서 발생하는 대기오염물질 실측에 관한 연구)

  • Park, Jinkyu;Lim, Seunghun;Oh, Jungmo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1063-1069
    • /
    • 2022
  • According to domestic air pollutant emission statistics, a considerable amount of air pollutants is generated by ships. Therefore, various policies are being implemented to limit air pollutant emissions from ships and improve the air quality in ports. In addition, international conventions are carried out for the prevention of marine pollution by ships. However, because few studies and experiments have been conducted on the measurement of air pollutants emitted from actually operating ships, this study presented a method and possibility for evaluating air pollutant emissions from a 9,196GT ship actually operating using a portable emission measurement system (PEMS). A difference in emission occurred depending on the RPM and load, and the emission of NOX was 497-2,060ppm, CO2 was 1.55-6.9%, and CO was 0.002-0.14%. The emission specified in the shop test provided by the engine manufacturer differed from the actual emission measured. This study proved that the maximum emission of each air pollutant generated in the entire sailing section of the ship was included in the PEMS measurement range, and the possibility of using PEMS for ships within 10,000GT was verified.

A Numerical Study on the Effects of Buildings and Topography on the Spatial Distributions of Air Pollutants in a Building-Congested District (건물 밀집 지역에서 대기오염물질 분포에 미치는 건물과 지형의 영향에 관한 수치 연구)

  • Kang, Geon;Kim, Jae-Jin;Lee, Jae-Bum
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.139-153
    • /
    • 2020
  • Using a computationalfluid dynamics(CFD) model, thisstudy evaluated the representativeness of an air quality monitoring system (AQMS) in an urban area and presented a methodology to determine the suitable AQMS locations for specific purposes. For this, we selected a 1.6 km × 1.6 km area around the Eunpyeong-gu AQMS (AQMS 111181) as a target area. We conducted simulationsfor two emission scenarios (scenario one: air pollutants transported from inflow boundaries, scenario two: air pollutants emitted from roads). Urban airflows were markedly influenced by mountainous terrain located in the northeast and southeast of the target area, and complicated airflow patterns occurred around the buildings. The distributions of air pollutants were dependent on the terrain (mountain) in scenario one, but the road location and building height in scenario 2. We evaluated whether the AQMS could represent the air quality in the target area based on the simulations for two scenarios. The concentrations simulated at the AQMS were similar in magnitude to the layer mean concentrations, which indicated good representativeness for the air quality in the target area. We also suggested which locations were suitable for different measurement purposes (hot spots, clean zones, average zones, shelter zones, equi-background zones).

Measurement of Indoor Air Quality for Ventilation with the Existence of Occupants in Schools

  • Shin Hee-Soo;Lee Jai-Kwon;Ahn Young-Chull;Yeo Chang-Shin;Byun Sang-Hyun;Lee Jae-Keun;Kang Tae-Wook;Lee Kam-Gyu;Park Hyo-Soon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.1001-1005
    • /
    • 2005
  • This paper evaluates the performance of ventilation for the removal of indoor pollutants as a function of ventilation rate and the number of occupants in a test room and school classroom. An experimental apparatus consists of a test room, a tracer gas supply system, a gas detector, and a fan for ventilation air supply with a controller. The ventilation performance is evaluated in a step-down method based on ASTM Standard E741-83 using $CO_{2}$ gas as a tracer gas in the test room of 35 $m^{3}.$ For the ventilation air flow rate of 1.0 ACH, a recommended ventilation flow rate of Korea school standard for acceptable indoor air quality in the case of one person, CO_{2}$ gas concentration decreases up to $55{\%}$ within 50 minutes without occupancy and increases up to $75{\%}$ in the case of one occupant. Also indoor air quality at the school classroom is investigated experimentally.