• 제목/요약/키워드: Air Particles

검색결과 1,525건 처리시간 0.023초

순환골재 생산 공정상에서 공기유동을 이용한 토분에 포함된 이물질 제거장치에 관한 연구 (Study on the Air-Flow Separator of Light Particles Included in the Clod in the Production Process of Recycling Aggregates)

  • 서용권;허성규;박용기
    • 한국가시화정보학회지
    • /
    • 제4권2호
    • /
    • pp.81-87
    • /
    • 2006
  • In this paper, we present flow patterns around and performance of an air-flow separator by using the numerical analysis. With this separator, particles of different density are to be separated by using the drag force from the air flow. The low-density particles are designed to be separated by using inhalation through holes on a rotating drum. To obtain the flow informations needed for determining the proper design parameters, we have performed numerical simulations by using a commercial code, ANSYS CFX. Various parameter set was tested and it was found that depending on the design of drums there exist critical parameter set regarding the attachment of light particles on the drum, which is prerequisite for the separation of materials. We present here the possibility of using the present design in separation of particles mixed in the clod for use in recycling.

  • PDF

Monitoring of the Distribution of Ambient Air Particles in Seoul Using a Cascade Impactor and the Particle Toxicity

  • Park, Eun-Jung;Kim, Dae-Seon;Park, Kwang-Sik
    • Environmental Analysis Health and Toxicology
    • /
    • 제25권2호
    • /
    • pp.99-109
    • /
    • 2010
  • The distribution of ambient air particles varies according to climate, industries, and other sources. In this study, ambient air particles (less than 12.1 ${\mu}m$) were monitored from February to August, 2007 as 12 different fractions sorted by a cascade impactor. Particles in the size range from 0.33 ${\mu}m$ to 0.76 ${\mu}m$ comprised the main fraction of ambient air particles in Seoul, Korea. On the day of an Asian dust event, the particle fraction size increased to 1.25~2.5 ${\mu}m$. The different sized particle fractions were also monitored for metals and were found to contain toxic heavy metals including Pb, Cd, Hg, Cr and As. Particle preparations were significantly cytotoxic when exposed to cultured BEAS-2B cells. Microarray analysis of the treated cells indicated a significant up-regulation of a number of genes associated with oxidative stress, including metallothionein, heme oxygenase-1, heat shock protein 70, and NAD(P)H dehydrogenase-1.

ULTRA-FINE PARTICLES AND GASEOUS VOLATILE ORGANIC COMPOUND EXPOSURES FROM THE REACTION OF OZONE AND CAR-AIR FRESHENER DURING METROPOLIS TRAVEL

  • Lamorena, Rheo B.;Park, Su-Mi;Bae, Gwi-Nam;Lee, Woo-Jin
    • Environmental Engineering Research
    • /
    • 제12권2호
    • /
    • pp.72-80
    • /
    • 2007
  • Experiments were conducted to identify the emissions from the car air freshener and to identify the formation of ultra-fine particles and secondary gaseous compounds during the ozone-initiated oxidations with emitted VOCs. The identified primary constituents emitted from the car air freshener in this study were $\alpha$-pinene, $\beta$-pinene, $\rho$-cymene and limonene. Formation of ultra-fine particles (4.4-160 nm) was observed when ozone was injected into the chamber containing emitted monoterpenes from the air freshener. Particle number concentrations, particle mass concentrations, and surface concentrations were measured in time dependent experiments to describe the particle formation and growth within the chamber. The irritating secondary gaseous products formed during the ozone-initiated reactions include formaldehyde, acetaldehyde, acrolein, acetone, and propionaldehyde. Ozone concentration (50 and 100 ppb) and temperature (30 and $40^{\circ}C$) significantly affect the formation of particles and gaseous products during the ozone-initiated reactions. The results obtained in this study provided an insight on the potential exposure of particles and irritating secondary products formed during the ozone-initiated reaction to passengers in confined spaces.

입자수송시스템 내 공기-입자 유동장의 압력손실 특성 해석 (Analysis of Pressure Drop Characteristics for the Air-Particle Flow in Powder Transport Piping System)

  • 이재근;구재현;권순홍
    • 한국유체기계학회 논문집
    • /
    • 제5권1호
    • /
    • pp.20-26
    • /
    • 2002
  • This study reports the analysis of the pressure drop characteristics for the air-particle flow in powder transport piping system. The pressure drop characteristics of air-particle flow in piping system is not well understood due to the complexity of particles motion mechanism. Particles or powders suspended in air flow cause the increase of the pressure drop and affect directly the transportation efficiency. In this study, the pressure drop in powder transport piping system with straight and curved pipes is analyzed for the interactions of air flow and particle motion. The total pressure drop increases with increasing of the pipe length, the mixture ratio, and the friction factor of particles due to the increasing friction loss by air and particles in a coal piping system. For the coal powders of $74{\mu}m$ size and powder-to-air mass mixture ratio of 0.667, the total pressure drop by the consideration of powders and air flow is $30\%$ higher than that of air flow only.

1993년 4월 22-24일에 관측된 황사현상에 대한 종관분석 (Synoptic analyses of the Yellow Sand Events observed over the Korean peninsula during 22-24 April, 1993)

  • 이재규
    • 한국환경과학회지
    • /
    • 제2권3호
    • /
    • pp.161-177
    • /
    • 1993
  • The Yellow Sand Events observed over the Korean peninsula during 22-24 April, 1993 were examined using the synoptic data and GMS visible image to identify the transport path of the Yellow Sand and the main factor governing the duration of the Yellow Sand phenomenon. The 850 hPa convergence chart and the 700 hPa trajectory analyses of the air mass laden with Yellow Sand particles suggested that the Yellow Sand particles observed over Korea were probably transported from the Gobi Desert and the Loess Plateau. The duration of the Yellow Sand Events was about 35-40 hours rather shorter than normal as the high pressure system centered near the Mongolia region moved rapidly toward the Yellow Sea, which drove away the Yellow Sand particles over the Korean peninsula toward the Japan Islands, furthermore the low-level stratification of the air mass over the Korean penishula showed the unstable atmospheric condition leading to atmospheric diffusion of the particles. The trajectory analyses and the GMS visible image indicated that the long-range transport of the air mass laden with the Yellow Sand particles of this case was more dependent on the 700 hPa air flow than on the 850 hPa air flow.

  • PDF

Trend and Characteristics of Ambient Particles in Seoul

  • Kim, Yong-Pyo
    • Asian Journal of Atmospheric Environment
    • /
    • 제1권1호
    • /
    • pp.9-13
    • /
    • 2007
  • Various aspects of the air quality problems caused by ambient particles in and around the city of Seoul are discussed. First, the trend of the air quality in Seoul over time is investigated along with the types and quantities of energy consumption in Seoul. It was found that the general air quality in Seoul has improved over the last twenty years because of a change in the primary fuel used in Korea. However, the visibility in Seoul, a representation of the ambient particle concentration, is still worse than in other cities in Korea. In the air around Seoul, secondary particle generation might be as important as particles directly emitted from within the city or transported from outside.

고부하도 CWM 연료방울안에 존재하는 미분탄 분포 (Coal particle distribution inside fuel droplets of high loading CWM)

  • 김성준;유영길
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.618-629
    • /
    • 1991
  • The purpose of this experiment is to understand the distribution of coal particles inside CWM droplet which is believed to be a very important factor controlling the flame stability. CWM slurry is atomized by an air assisted twin fluid nozzle. An experimental rig is designed and fabricated. The mean size of coal particle distribution in CWM slurry, atomizing air pressure, coal particle loading in slurry and sampling position inside spray are main experimental variables. The atomized CWM droplets are sampled on the thin white layer of magnesium oxide by the emergency sampling shutter. The sampled coal particles on magnesium oxide layers are collected into test tubes and dispersed completely by Ultra-Sonicator. The size distribution of coal particles inside droplets are measured by Coulter Counter. The presence of coal particle inside the impressions of droplets on magnesium oxide layer are investigated by photo technique. There are quite many droplets which do not have any coal particles. Those are just water droplets, not CWM droplets. The population ratio of droplets without coal particles to toal number of droplets is strongly affected by the mean size of coal particle distribution in slurry and this ration becomes bigger number as the mean size of coal particles be larger. The size distribution of coal particles inside CWM droplets is not even and depends on the size of droplet. Experimental results show that the larger CWM droplets has droplets has bigger mean value of particle size distribution. This trend becomes more evident as the atomizing air pressure is raised and the mean size of coal particles in CWM slurry is bigger. That is, the distribution of coal particles inside CWM dropolets is very much affected by the atomizing air pressure and the mean size of pulverized coal particles in CWM slurry.

전기가열 튜브로를 이용한 나노/서브마이크론 입자의 발생 (Generation of Nano/Submicron Particles Using an Electrically Heated Tube Furnace)

  • 지준호;배양일;황정호;배귀남
    • 대한기계학회논문집B
    • /
    • 제27권12호
    • /
    • pp.1734-1743
    • /
    • 2003
  • Aerosol generator using an electrically heated tube furnace is a stable apparatus to supply nanometer sized aerosols by using the evaporation and condensation processes. Using this method, we can generate highly concentrated polydisperse aerosols with relatively narrow size distribution. In this work, characteristics of particle size distribution, generated from a tube furnace, were experimentally investigated. We evaluated effects of several operation parameters on particle generation: temperature in the tube furnace, air flow rates through the tube, size of boat containing solid sodium chloride(NaCl). As the temperature increased, the geometric mean diameter increased and the total number concentration also increased. Dilution with air affected the size distribution of the particles due to coagulation. A smaller sized boat, which has small surface area to contact with air, brings smaller particles of narrow size distribution in comparison of that of a larger boat. Finally, we changed the electrical mobility diameter of aggregate sodium chloride particles by varying relative humidity of dilution air, and obtained non-aggregate sodium chloride particles, which are easy to generate exact monodisperse particles.

에어로졸 중화기의 나노 입자 하전 특성 (Nano Particle Charging Characteristics of Aerosol Charge Neutralizers)

  • 지준호;배귀남;황정호
    • 대한기계학회논문집B
    • /
    • 제27권10호
    • /
    • pp.1489-1497
    • /
    • 2003
  • Aerosol charge neutralizers with various radioactive sources have been used to apply an equilibrium charge distribution to aerosols of unknown charge distribution. However, the performance of aerosol charge neutralizers is not well known, especially for highly charged particles. Measurements of highly charged particles are needed in air cleaning devices, e.g. electrostatic precipitator, bag filter with a pre-charger, and electrical cyclone. In this study, the particle charging characteristics of two different aerosol charge neutralizers were experimentally investigated for singly charged monodisperse particles and highly charged polydisperse particles. One has radioactive source of $^{85}$ Kr (beta source, 2 mCi) and the other has $^{210}$ Po (alpha source, 0,5 mCi). The air flow rate passing through each aerosol charge neutralizer was changed from 0.2 to 2.5 L/min. The results show that the charge distribution of singly charged monodisperse particles passing through the $^{85}$ Kr aerosol charge neutralizer is well agreed with the Boltzmann equilibrium charge distribution at an air flow rate of 0.3 L/min, However, it deviates from the equilibrium charge distribution when the air flow rates are 0.6, 1,0, and 1,5 L/min, On the other hands, the effect of air flow rate is insignificant for the $^{210}$ Po aerosol charge neutralizer. The non-equilibrium character in charge distribution of highly charged polydisperse particles passing through the $^{85}$ Kr aerosol charge neutralizer greatly depends on the air flow rate, however it is insensitive to the air flow rate for the $^{210}$ Po aerosol charge neutralizer.

Mud handling system 내 cyclone separator의 집진효율 추정을 위한 공기-분체의 CFD 시뮬레이션 (CFD Simulation of Air-particle Flow for Predicting the Collection Efficiency of a Cyclone Separator in Mud Handling System)

  • 전규목;박종천
    • 한국해양공학회지
    • /
    • 제33권1호
    • /
    • pp.42-49
    • /
    • 2019
  • Drilling mud was used once in the step of separating the gas and powder they were transported to a surge tank. At that time, the fine powder, such as dust that is not separated from the gas, is included in the gas that was separated from the mud. The fine particles of the powder are collected to increase the density of the powder and prevent air pollution. To remove particles from air or another gas, a cyclone-type separator generally can be used with the principles of vortex separation without using a filter system. In this study, we conducted numerical simulations of air-particle flow consisting of two components in a cyclone separator in a mud handling system to investigate the characteristics of turbulent vortical flow and to evaluate the collection efficiency using the commercial software, STAR-CCM+. First, the single-phase air flow was simulated and validated through the comparison with experiments (Boysan et al., 1983) and other CFD simulation results (Slack et al., 2000). Then, based on one-way coupling simulation for air and powder particles, the multi-phase flow was simulated, and the collection efficiency for various sizes of particles was compared with the experimental and theoretical results.