• 제목/요약/키워드: Air Particles

Search Result 1,523, Processing Time 0.031 seconds

Characteristics of Concentration and Size Distribution of PAHs of Total Suspended Particulates in urban air (도시대기부유분진중 다환방향족 탄화수소의 농도 및 입경분포 특성)

  • 조기철;이승일;김달호;허귀석;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.1
    • /
    • pp.57-63
    • /
    • 1994
  • In order to comprehension of the behaviour of PAHs in air which is known as carcinogens and/or mutagens suspended Particulates in ambient air were collected by Anderson air sampler from 1992. 6 to 1993. 5 in Seoul. Ten species of PAHs( Phen, An, Fl, R, Py, BaAn, BaP, Chry, BeP, DiB(a, h)An, I123p) were analyzed to understand monthly variations of PAHs distribution of PAHs concentration according to particle size, and correlation between PAHs and independent charactierstics of PAHs The highest concentration of TSP was 155.58$\mu\textrm{g}$/㎥ in May and the lowest was 60$\mu\textrm{g}$/㎥ in August. Concentration of TSP was more affected by coarse particles in spring, otherwise which was more affected by fine particles in winter. According to results of anaylsis of samples that were collected by Anderson air sampler, concentration of PAHs was more high in winter than that in summer. In almost samples collected by Anderson air sampler, concentration of PAHs was more high in coarse particles than in fine particles, but BaP well known as carcinogenic matter had more high concentration in fine particles(56-97.5%) than that in coarse particles(2.5-46%). Correlation between concentrations of TSP and PAHs was more high in fine Particles than in coarse Particles. Both fine particles and coarse particles have negative correaltion with radiation.

  • PDF

An Experimental Study on the Removal Characteristics of Indoor Air Pollutants using an Air Cleaning System (실내 공기정화 시스템에 의한 실내 오염입자의 제거특성에 관한 실험적 연구)

  • 김성찬;이창건;안영철;이재근;강태욱;이감규;구정환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.9
    • /
    • pp.733-737
    • /
    • 2003
  • The purpose of this study is to analyze the particle removal characteristics of a commercial air cleaner based on the electrostatic precipitator. The air cleaner consists of a positive corona precharger to precharge particles and a collector to remove the charged particles. The test for particle removal efficiency is conducted with tobacco smoke particles of 1.27${\mu}{\textrm}{m}$ in mass median diameter. The result of one-pass filtration test shows that the filtration efficiency is more than 90% for the particles larger than 2.5 Um, while the efficiency for the particles of 0.5~1.0${\mu}{\textrm}{m}$ in case of 4.18 CMM is 70%. For the test room of 5,800${\times}$3,400${\times}$2,600㎣, the concentration of tobacco smoke particles decreases up to 30% of initial values within 30 minutes due to natural reduction and up to 90% of initial values within 30 minutes with the air cleaner operation.

Characteristics of the Reduction of Fine Particles in an Indoor Air Cleaner Using Electrostatic Precipitation Technique (전기집진기형 공기청정기의 미세 먼지 저감 특성에 관한 연구)

  • Mok, Young-Sun;Lee, Ho-Won
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.115-120
    • /
    • 2004
  • An indoor air cleaner consisting of a dielectric barrier discharge system and an electrostatic precipitator (ESP) was experimentally investigated. The function of the dielectric barrier discharge is to precharge particles by producing nonthermal plasma before indoor air enters ESP, leading to an enhancement in dust collection efficiency. The dependence of particle size distribution on the plasma discharge was examined to understand the mechanism of the particle precharging. The plasma discharge was found to increase the electrical force of the particles, rather than agglomerate them. Coarse particles in the range of 0.5 to $5.0{\mu}m$ were observed to be easily collected by this indoor air cleaner, and the present study laid emphasis on the removal of fine particles of $0.3{\mu}m$. The collection efficiency of the fine particles was largely enhanced by the plasma discharge.

  • PDF

Preparation of Ultrafine Mn-Zn Ferrite by Direct-Wet Synthesis and a Study of Magnetic Properties (습식직접 합성에 의한 초미분 Mn-Zn Ferrite의 합성과 자성특성에 관한 연구)

  • 이경희;이병하;허원도;황우연
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.10
    • /
    • pp.757-766
    • /
    • 1991
  • These powder properties were investigated and prepared of ultrafine Mn-Zn ferrite powder by Direct-wet process from variation of oxidation condition. H2O2 oxidation the products were ultrafine spherical particles of about 400${\AA}$ in diameter and superparamagnetics. H2O2 and Air oxidation, Coexistance ultrafine spherical particles of about 400${\AA}$ and cubic particles of about 1000${\AA}$. The products were constructed of superparamagnetic and ferromagnetic particles, and Magnetization were about 30 emu/g. Air Oxidation, Above 6 hr Air 120 ι/hr and 4 hr of Air 180 ι/hr were uniform cubic particles of above 1000${\AA}$. The products were ferromagnetic particles and Magnetization of above 45 emu/g.

  • PDF

A Study on the Coarse Particles Burden to Aerosol in Seoul Area (粗大粒子가 大氣淨遊粉塵에 주는 負荷)

  • 이윤재;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.1 no.1
    • /
    • pp.71-82
    • /
    • 1985
  • The effect on the particulate matters in the atmosphere was investigated in Seoul area from March, 1984 to Aprill, 1985. Aerosols were collected by filters on nine stages Andrsen Air Sampler, and size distribution and total concentration of the aerosols, Fe and Pb were measured. In spring with Yellow Sand the concentration of particles in aerosols was 185.55$\mug/m^3$ and CP/TA was 65.9%. But in spring without Yellow Sand those of particles was 135.45$\mug/m^3$ and CP/TA was 58.6%. Accordingly the concentration of coarse particles with Yellow Sand was higher than without them in Spring. Above results indicate that in Seoul Area the main source of air pollution originated from natural burdens, especially from soil. The concentration of Pb was similarly valued through both seasons in Seoul area but fine particles valued above coarse particles. On the other hand, in urban area, the natural and anthropogenic sources have influenced on the concentration of Pb. With referred to particle size distribution for Fe, the concentration of coarse particles was 0.168$\etag/m^3$ (CP/TA: 74.3%) in Spring with Yellow Sand, 0.096$\mug/m^3$ (CP/TA: 71.6%) without Yellow Sand and 0.083$\mug/m^3$ (CP/TA: 67.4%) in winter, respectively. Compared with fine particles, all of them were higher. It indicated that the origin of coarse particles in urban air was not related to anthropogenic source. The concentration of Fe was influenced by Yellow Sand and contributed to air pollution.

  • PDF

Influence of Particle and Filter Charge on Filtration Property of Air Filter under Particle Loading (입자 및 필터 대전상태에 따른 입자부하조건에서 공기정화 필터의 여과특성)

  • Ji, Sung-Mi;Sohn, Jong-Ryeul;Park, Hyun-Seol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.6
    • /
    • pp.644-655
    • /
    • 2012
  • As soon as a new air filter is applied to an air purification process, the filter gets loaded with dust particles. Thus, the study on the particle loading characteristics of air filter is very essential in order to understand the real filtration phenomena during filter use. In this study, we investigated the effect of particle and filter charge on the particle loading property of air filter. Charged filter and uncharged filter prepared by discharging the charged filter by isopropyl alcohol were used as test samples, and three types of particle having different charge states were supplied to filters tested. For neutralized particles there was a big difference in areal mass loading rates between charged and uncharged filters due to the very small amount of particle charge, on the other hand the difference was diminished for atomized particle and finally almost vanished for corona charged particles. The pressure drop of filter loaded with corona charged particles was only half of those for neutralized and atomized particles at the same areal mass loading because of the porous structure of particle deposit formed on filter fibers, caused by the space charge effect between particles.

Vehicle-related Fine Particulate Air Pollution in Seoul, Korea

  • Bae, Gwi-Nam;Lee, Seung-Bok;Park, Su-Mi
    • Asian Journal of Atmospheric Environment
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Vehicle exhaust is a dominant source of air pollutants in urban areas. Since people are easily exposed to vehicle exhaust particles while driving a car and/or traveling via public transportation, air pollution near traffic has been extensively studied in developed countries. In this paper, investigations on vehicle-related fine particulate air pollution at roadsides and on roads in Seoul, Korea were reviewed to understand air pollution near traffic. Comparison of $PM_{10}$ concentrations in Seoul showed that roadside air is more contaminated than urban air, implying that exposure levels near vehicular emissions are more critical to sensitive persons. Concentrations of ultrafine particles and BC (black carbon) at roadsides of Seoul fluctuate highly for short durations, responding to traffic situations. Diurnal variations of ultrafine particles and BC concentrations at roadsides seem to be affected by traffic volume, mixing layer height, and wind speed. Concentrations of ultrafine particles and BC decrease as distance from the road increases due to dilution during transport. On-road air pollution seems to be more severe than roadside air pollution in Seoul. Since nearby traffic air pollution has not been well understood in Seoul, further studies including various vehicular air pollutants and representative locations are needed.

Downward and Upward Air Flow Effects on Fume Particle Dispersion in Laser Line Cutting of Optical Plastic Films

  • Kim, Kyoungjin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.37-44
    • /
    • 2020
  • In improving laser cutting of optical plastic films for mass production of optoelectronics display units, it is important to understand particle contamination over optical film surface due to fume particle generation and dispersion. This numerical study investigates the effects of downward and upward air flow motions on fume particle dispersion around laser cut line. The simulations employ random particle sampling of up to one million fume particles by probabilistic distributions of particle size, ejection velocity and angle, and fume particle dispersion and surface landing are predicted using Basset-Boussinesq-Oseen model of low Reynolds number flows. The numerical results show that downward air flow scatters fume particles of a certain size range farther away from laser cut line and aggravate surface contamination. However, upward air flow pushes fume particles of this size range back toward laser cut line or sucks them up with rising air motion, thus significantly alleviating surface contamination.

Assessment of Air Flow Misalignment Effects on Fume Particle Removal in Optical Plastic Film Cutting Process

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.51-58
    • /
    • 2020
  • Many types of optical plastic films are essential in optoelectronics display unit fabrication and it is important to develop high precision laser cutting methods of optical films with extremely low level of film surface contamination by fume particles. This study investigates the effects of suction and blowing air motions with air flow misalignment in removing fume particles from laser cut line by employing random particle trajectory simulation and probabilistic particle generation model. The computational results show fume particle dispersion behaviors on optical film under suction and blowing air flow conditions. It is found that suction air flow motion is more advantageous to blowing air motion in reducing film surface contamination outside designated target margin from laser cut line. While air flow misalignment adversely affects particle dispersion in blowing air flows, its effects become much more complicated in suction air flows by showing different particle dispersion patterns around laser cut line. It is required to have more careful air flow alignment in fume particle removal under suction air flow conditions.

Synthesis and Analysis of Nanosized TiO2 Particles Using a Tube Furnace (튜브 전기로를 이용한 TiO2 나노입자의 합성 및 특성 분석)

  • 배귀남;현정은;이태규;정종수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.411-419
    • /
    • 2004
  • Titania particles are widely used as a photocatalyst to treat various contaminants in air and water. Titania particles were formed by vapor-phase oxidation of titanium tetraisopropoxide (TTIP) in a tube furnace between 773 and 1,273 K. The effect of process variables such as furnace temperature, flow rate of carrier air, and flow rate of sheath air on powder size and phase characteristics was investigated using a scanning mobility particle sizer (SMPS), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The size distribution of synthesized titania particles was characterized with mode diameter and peak concentration. The mode diameter ranging from 20 to 80 nm decreased with increasing flow rates of sheath air and carrier air, and increased with increasing furnace temperature. The peak concentration increased with increasing flow rates of sheath air and carrier air The best synthetic condition for high production rate can be derived from the experimental data set represented by mode diameter and peak concentration. The crystal structure of synthesized titania particles was found to be anatase phase, ensuring high photocatalytic potential.