• Title/Summary/Keyword: Air Mass Flow Rate

Search Result 561, Processing Time 0.029 seconds

A Numerical Analysis on High Pressure Control Valve for Offshore (해양구조물용 고압 컨트롤 밸브 수치해석)

  • Yi, Chung-Seub;Jang, Sung-Cheol;Jeong, Hwi-Won;Nam, Tae-Hee
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1195-1200
    • /
    • 2008
  • This study have goal with conceptual design for Offshore Structures of high pressure control valve for localization. Ball valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25 In order to localize the Offshore Structures high pressure control valve. Numerical simulation using CFD(Computational Fluid Dynamic) in order to predict a mass flow rate and a flow coefficient form flow dynamic point of view. The working fluid assumed the glycerin($C_3H_8O_3$). The valve inlet and outlet setup a pressure boundary condition. The outlet pressure was fixed by atmospheric pressure and calculated until increasing 1bar to 10bar. CFD analysis used STAR-CCM+ which is commercial code and Governing equations were calculated by moving mesh which is rotated 90 degrees when ball valve operated opening and closing in 1 degree interval. The result shows change of mass flow rate according to opening and closing angle of valve. Flow decrease observed open valve that equal percentage flow paten which is general inclination of ball valve. Relation with flow and flow coefficient can not be proportional according to inlet pressure when compare with mass flow rate. Because flow coefficient have influence in flow and pressure difference. Namely, flow can be change even if it has same Cv value. The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and seat structure.

  • PDF

The study on the estimation of heat transfer coefficient through the counterflow concentric tube using refrigerant and moisture air (냉매와 습공기가 교차하는 2중관에서 전열계수 예측을 위한 연구)

  • 조권희
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.687-694
    • /
    • 1999
  • This study was conducted to develop new drying process for automatic control and marine engi-neering system. Air-water tests were carried out to investigate dryer performance. The dispersed flow in he dryer test apparatuses was also simulated by using a numerical code which solves the Dittus-Boelter equation for continuous liquid phase and the Reynolds equation of droplet motion for continuous liquid phase and the Reynolds equation of droplet motion for dispersed phase to predict droplet removal efficiency. Proper conditions for dehumidification were optimized by response ambient conditions. When the selected indexes were constrained in the range of 85-98% moisture content above $15^{\circ}$ and more than mass flow rates of moist air 750kg/h. The numerical results were compared with the experimental data pertaining to the removal effi-ciency at chamber stage and overall pressure drop along concentric tubes Good agreement was obtained as for the efficiency while relatively poor agreement was obtained for the relative humidity. The results also showed that the efficiency depended strongly on the relative humidity at the inlet condition which indicated the importance of estimating the heat exchanger length. Effects of some design parameters in both removal efficiency and breakthrough onset condition are discussed.

  • PDF

A Study of Two-Phase Swirl Spray Characteristics on Dual Airblast Velocity Ratio (이중공기공급 속도비에 따른 이류체 선회분무 특성 연구)

  • Kang, S.J.;Oh, J.H.;Song, K.J.;Rho, B.J.
    • Journal of ILASS-Korea
    • /
    • v.5 no.3
    • /
    • pp.27-36
    • /
    • 2000
  • In this study, spray characteristics of a dual airblast atomizer are addressed. Three dimensional characteristics of a dual airblast atomizer with air swirl are measured to provide the significant data. The liquid flow rate was fixed at 0.06 kg/min, and atomizing air was controlled at the liquid-air mass ratio of 4.0. The performance of the spray with co-swirl and counter-swirl flow was investigated at each point in the developed spray region using a three-component phase Doppler particle analyzer. This instrument was also used to evaluate the concentration profiles. The three dimensional mean velocity were investigated of present flow characteristics of the dual airblast atomizer. In addition, drop size distributions, mean droplet size profile, and droplet concentration were analyzed to understand atomization characteristics. This experimental results can be conveniently utilized for the preliminary design of gas turbine engines for aircraft.

  • PDF

COMBUSTION CHARACTERISTICS OF INHOMOGENEOUS METHANE-AIR MIXTURE IN A CONSTANT VOLUME COMBUSTION CHAMBER

  • Choi, S.H.;Jeon, C.H.;Chang, Y.J.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.181-188
    • /
    • 2004
  • A cylindrical constant-volume combustion chamber was used to investigate the flow characteristics at the spark electrode gap and the combustion characteristics of an inhomogeneous charge methane-air mixture under several parameters such as stratified pattern, initial charge pressure, ignition time and the excess air ratio of the initial charge mixture. Flow characteristics including mean velocity and turbulence intensity were analyzed by a hot-wire anemometer. The combustion pressure development, measured by a piezo-electric pressure transducer, was used to investigate the effect of initial charge pressure, excess air ratio and ignition times on combustion pressure and combustion duration. It was found that the mean velocity and turbulence intensity had the maximum value around 200-300 ms and then decreased gradually to near-zero value at 3000 ms. For the stratified patterns, the combustion rate under the rich injection (RI) condition was the fastest. Under the initial charge conditions, the second mixture was accompanied by an increase in the combustion rate, and that the higher the mass which is added in the second stage injection, the faster the combustion rate.

Characteristic Analysis of the Cooling System Using Ice Slurry Type Heat Storage System (아이스슬러리형 빙축열 시스템을 이용한 냉각 시스템의 특성 분석)

  • Lee, Dong-Won;Lee, Soon-Myung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.111-115
    • /
    • 2006
  • To clarify the hydraulic and thermal characteristics of ice slurry which made from 6.5% ethylene glycol-water solution flow in the double tube and plate type heat exchanger, experimental studies were performed. The mass flux and Ice fraction of ice slurry were varied from 800 to $3,500 kg/m^2s$(or 7 to 17 kg/min) and from 0 to 25%, respectively. During the experiment, it was found that the measured pressure drop and heat transfer rate increase with the mass flux and ice fraction; however the effect of ice fraction appears not to be significant at high mass flux region. At the region of low mass flux, a sharp increase in the pressure drop and heat transfer rate were observed depends on mass flux.

  • PDF

Experimental Study on Development of Air Leakage Model and Performance Characteristics of a Desiccant Rotor (제습로터의 공기누설모델 개발 및 성능 특성에 관한 실험적 연구)

  • Kang, Byung-Ha;Pi, Chang-Hun;Chang, Young-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.37-45
    • /
    • 2012
  • This study investigates the pressure leakage characteristics of a desiccant rotor with a brush-type air seal. Through a pressure leakage experiment, a correlation equation for the leakage air flow rate is obtained as a function of the air seal area and pressure difference. Using this equation, an air leakage model for the desiccant rotor is developed. By comparing simulation results with the experimental results for the desiccant rotor, the accuracy of the air leakage model is demonstrated. A performance test of a desiccant rotor with various air flow rates is carried out. Using the air leakage model, the effective mass flow rate and air leakage rate are found. In addition, the characteristics of the air leakage are analyzed for a desiccant cooling system using the developed air leakage model.

An Analytic and Experimental Study on the Performance Characteristic of the Rotary Compressor (로타리 압축기 성능특성에 관한 해석 및 실험)

  • 최득관;김경천;차강욱
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.6
    • /
    • pp.497-504
    • /
    • 2001
  • A study to improve the accuracy of a map-based compressor model with experiment was performed. Corrections on the effects of suction gas superheat and heat leakage from a compressor shell are required to apply the compressor amp model based on the empirical performance data(map) of compressor manufacturers to the actual system. So experiments to assess the effects of superheat and hat leakage were performed and the corrected equations were made. Compressors and refrigerant used in the experiment were the high pressure type rotary compressor and R-22, experiments were performed by compressor calorimeter. From the experiment, a volumetric efficiency correction factor$(F_ν)$ showed the value of 0.77, slightly higher than 0.75 proposed by Dabiri and Rice for low pressure type reciprocating compressor, and the heat leakage from the compressor shell turned out to be a factor that influenced the discharged mass flow rate. The relation between heat leakage of compressor shell and the variation of discharged mass flow rate from compressor was considered in compressor map modeling as an empirical function. With this function, the prediction accuracy of compressor model in system conditions was improved.

  • PDF

Ice Making Characteristics According to Changing Shape of Ice Making Tube (제빙관의 형태변화에 따른 제빙특성)

  • Jung, Eun-Ho;Park, KI-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.5
    • /
    • pp.291-296
    • /
    • 2009
  • Ice accumulating system patterned ice-an-coil is the way of refrigerating regenerative materials on the surface of copper-tube inserted into the inside of ice-storage. The study experimented to understand ice-an-coil type ice making characteristics according to changing shape of ice making tube. The experiment were carried out under various conditions, that used brine temperature($-l0^{\circ}C$, $-6^{\circ}C$) brine flow rate(l.0m/s, 1.8m/s) and inlet water temperature($6^{\circ}C$, $12^{\circ}C$) etc. Mass of ice per making area increased according to the decrease of the brine temperature and inlet water temperature, but that was increased according to the increase of the brine flow rate. And I set up two hypotheses and compared the capacity of ice-making of the two cases; each had the same thermal area and one had an round-shaped copper tube but the other had an oval-shaped copper tube.

Thermal and Flow Characteristic of the Microchannel Waterblock with Flow Distributions (미세채널 워터블록의 채널 내 유량분배에 따른 열유동 특성)

  • Choi, Mi-Jin;Kwon, Oh-Kyung;Cha, Dong-An;Yeun, Jae-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.269-274
    • /
    • 2008
  • The present study has been studied on a thermal and flow characteristic of the microchannel waterblock with flow distributions in each channels. Results of a numerical analysis using the CFX-11 are compared with results of an experiment. Numerical analysis and experiment are conducted under a heat transfer rate of 150W, inlet temperature of $20^{\circ}C$ and mass flow rates of $0.7{\sim}2.0\;kg$/min. Base temperature and pressure drop are investigated with standard deviations of mass flow rates in each channels of samples at 0.7 kg/min.

  • PDF

NUMERICAL ANALYSIS OF A 150KW HUELS TYPE ARC HEATER (150kW급 Huels형 아크 히터 내부의 유동 해석)

  • Han, S.H.;Byeon, J.Y.;Kim, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.562-566
    • /
    • 2010
  • Numerical analysis of 150kW Huels-type arc jet was performed using compressible Navier-Stokes CFD code. To consider chemical reaction by high temperature, the flow was assumed to be chemical equilibrium states. As a turbulence and a radiation model, the two-equation k-epsilon model and the 3-band radiation model were adopted, respectively. Mass flow rate and current density were given as conditions for calculations. In this study, two kinds of mechanisms for injection of air flow wire considered. One is that air is provided by left wall surface and the other is that air is injected from upper wall surface. The pressure, density and temperature contours of two cases were compared and heat transfer rates were estimated. The numerical results of two cases were not much different to each other. However, in real 150KW device, air is injected from upper wall surface with swirl. To calculate more accurately, swirl effect is must be considered.

  • PDF