• 제목/요약/키워드: Air Levitation

검색결과 99건 처리시간 0.029초

출력보상형 제어기법에 의한 부상제어 시스템 (Levitation System controlled by Output-compensation control method)

  • 성호경;이종무;조정민;이종민;유문환;조흥제;남용윤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.313-315
    • /
    • 2006
  • Being controlled by a pole placement, levitation system should need many sensors that measure air-gap, velocity, acceleration, and so on. However, these sensors have observational errors by changed temperature. This paper proposed a output compensated command tracking controller for reducing the error and reducing sensors. Simulation results will be provided to show the validity of the proposed scheme.

  • PDF

4개의 자기 부상 액츄에이터 제어에 관한 연구 (A Study on Four Magnetic Levitation Actuator Control)

  • 원진국;문지우;조윤현;구대현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.940-941
    • /
    • 2008
  • Recently, there are a great many research for magnetic levitation(Maglev) system. Maglev system is eco-friendly used in a place that is not friction. But Maglev is system that inductance is changed according to air-gap, so this is unstable system. In this paper, we simulate 1 Maglev actuator Control and we do an experience on 4 Maglev actuator system control. however, we get a problem of 4 maglev actuator control, because Maglev is 3 DOF(Degree of Freedom). so we control average err of 2 Maglev actuator in the rear.

  • PDF

상태관측기를 이용한 자기부상시스템의 부상제어 (The Levitation Control of Maglev using State Observer)

  • 성호경;이종무;조정민;조흥제;김동성;남용윤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1126-1127
    • /
    • 2006
  • Being controlled by a pole placement, levitation system should need many sensors such as measure air-gap, velocity, acceleration, and so on. However, these sensors have observational errors by changed temperature. This paper proposed a output compensated command tracking controller for reducing the error and reducing sensors. Simulation results will be provided to show the validity of the proposed scheme.

  • PDF

도시형 자기부상열차의 주행성능시험(II) - 부상시스템 - (The Study on the Running Test of Urban Transit Maglev (II) - Levitation System -)

  • 이정석;이서우;김봉섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 A
    • /
    • pp.6-8
    • /
    • 1999
  • In this paper deals with running test for the UTM(Urban Transit Maglev)-01, that is test and evaluation for the maglev. We will predict about the test value for running maglev vhicle. In this time we tested rms gap fluctuation and peak to peak air gap for levitation system of UTM-01. And then we profit for the upgrade Maglev System.

  • PDF

Design and Analysis of a New Hybrid Electromagnetic Levitation System

  • Na, Uhn Joo
    • 한국산업융합학회 논문집
    • /
    • 제22권1호
    • /
    • pp.29-37
    • /
    • 2019
  • A new permanent magnet biased hybrid maglev actuator is developed. Compared to the classical hybrid maglev actuators, the new maglev has unique flux paths such that bias fluxes are separated with control flux paths. The control flux paths have minimum reluctances only developed by air gaps, so the currents to produce control fluxes can be minimized. The consumed power to operate this maglev system can also be minimized. The gravity load can be compensated with the static magnetic forces developed by the permanent magnet bias fluxes while external disturbances are controlled with the bidirectional AC magnetic forces developed by control fluxes by currents. 1-D circuit model is developed for this model such that the flux densities and magnetic forces are extensively analyzed. 3-D finite element model is also developed to analyze the performances of the maglev actuator.

Numerical Study on the Air-Cushion Glass Transportation Unit for LCD Panels

  • Im Ik-Tae;Jeon Hyun-Joo;Kim Kwang-Sun
    • 반도체디스플레이기술학회지
    • /
    • 제5권1호
    • /
    • pp.27-31
    • /
    • 2006
  • Non-contact transportation system using air cushion for the manufacturing of large-sized LCD panels was considered. Flow characteristics between air pad and glass plate was analyzed using computational fluid dynamics method to obtain optimized air pad configurations. Effects of the design variables such as hole arrays from which gas is injected, gas-feeding method into the gas supplying channels, and horizontal and vertical pitches of clusters of holes were studied. Optimized air pad unit gave evenly distributed pressure contour on the glass surface and well-suspended levitation height in the experiment.

  • PDF

자기부상열차 고가 선로 구조특성에 따른 부상공극 응답 (Air Gap Change of a Maglev Vehicle at the Moment a Linear Induction Motor Runs)

  • 신현재;한형석;이종민;노규석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.1213-1217
    • /
    • 2009
  • The air gap between electromagnet and guiderail in an EMS-type Maglev vehicle must be maintained within an allowable deviation by controlling the voltage on the magnet. In this type of vehicle, the air gap response is strongly dependent on the structural characteristics of the elevated guideway, such as stiffness, damping and mass. For this reason, the dynamic interaction between the vehicle with electromagnets and the elevated guideway must be understood to ensure safe running. The response of the air gap to guideway characteristics such as mass, stiffness, and damping are analyzed through vehicle tests over different guideways. Through such tests, the design requirements for Maglev vehicles and elevated guideways can be established, improving levitation stability.

  • PDF

궤도 선형을 고려한 자기부상 열차의 3자유도 동역학 모델 수립 및 검증 (Modeling and Validation of 3DOF Dynamics of Maglev Vehicle Considering Guideway)

  • 박현철;노명규;강흥식;한형석;김창현;박영우
    • 한국정밀공학회지
    • /
    • 제34권1호
    • /
    • pp.41-46
    • /
    • 2017
  • Magnetically levitated (Maglev) vehicles maintain a constant air gap between guideway and car bogie, and thereby achieves non-contact riding. Since the straightness and the flatness of the guideway directly affect the stability of levitation as well as the ride comfort, it is necessary to monitor the status of the guideway and to alert the train operators to any abnormal conditions. In order to develop a signal processing algorithm that extracts guideway irregularities from sensor data, virtual testing using a simulation model would be convenient for analyzing the exact effects of any input as long as the model describes the actual system accurately. Simulation model can also be used as an estimation model. In this paper, we develop a state-space dynamic model of a maglev vehicle system, running on the guideway that contains jumps. This model contains not only the dynamics of the vehicle, but also the descriptions of the power amplifier, the anti-aliasing filter and the sampling delay. A test rig is built for the validation of the model. The test rig consists of a small-scale maglev vehicle, tracks with artificial jumps, and various sensors measuring displacements, accelerations, and coil currents. The experimental data matches well with those from the simulation model, indicating the validity of the model.

루프형성 기법을 이용한 편심배치방식 자기부상 시스템의 강인 LQ 제어 (Robust LQ control of magnetically levitation systems with a combined lift and guidance using loop-shaping techniques)

  • 박전수;김종식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.747-753
    • /
    • 1992
  • The modeling and control design schemes are developed for maglev systems with a combined lift and guidance. First, bond graph techniques are applied for modeling these multi-energy domain systems more logically and systematically. And the stability loop via pole placement and the performance loop via loop-shaping LQ control are designed. The suggested controller satisfies the required characteristics of stability and performance simultaneously. Finally, the robustness of the synthesized maglev control system is evaluated for the variations of air gap and vehicle mass through computer simulation.

  • PDF

초고속 Maglev용 초전도 마그넷 요소 기술 및 국내 연구 개발 현황 (Core Technologies of Superconducting Magnet for High-speed Maglev and R&D Activities in Korea)

  • 이창영;강부병;한영재;심기덕;박동근;고태국
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.1454-1460
    • /
    • 2009
  • Ultra-speed tube train, which runs in vacuum atmosphere to overcome aero-dynamic dragging force, is considered as a high-speed ground transportation system to back up long-distance air travel. To realize the ultra-speed tube train, feasibility study of currently available Maglev technologies especially for propulsion and levitation system is needed. Propulsion by linear synchronous motor(LSM) and levitation by electro-dynamic suspension(EDS) which are utilized in the Japan's MLX system could be one of candidated technologies for ultra-speed tube train. In the LSM-EDS system, the key component is superconducting magnet, and its reliability and performance is very important to guarantee the safe-operation of Maglev. As the initiative of the feasibility study, this paper deals with the basic structure of superconducting magnet and core technologies to design and operate it. And by surveying the current R&D achievement in Korea, the nation's capability to develop advanced superconducting magnet for Maglev is presented.

  • PDF