• 제목/요약/키워드: Air Fuel Mixture

검색결과 343건 처리시간 0.022초

연소실내 분사식 수소연료기관의 특성에 관한 연구 (A Study on the In-Cylinder Injection Type Hydrogen Fueled S.I. Engine)

  • 조우흠;이형승;김응서
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1702-1708
    • /
    • 1995
  • Owing to the serious problem of hydrocarbon fuel such as environmental pollution, the development of alternative fuel is very urgent. To adopt hydrogen to the internal combustion engine, a solenoid-drive type in-cylinder injection system was constructed. The injection system was installed to the single cylinder research engine, and the engine performance and the emission of citric oxide were tested upon the fuel-air equivalence ratio and the spark timing. In the case of in-cylinder injection system, hydrogen is injected after the intake valve is close, so it is possible to operate the engine without the back fire and the fall of its volumetric efficiency. In the region of the fuel-air equivalence ratio below 0.5, hydrogen and air aren't well mixed and the thermal efficiency is lowered, so the nozzle should be designed to inject hydrogen uniformly into the combustion chamber. In the region of the fuel-air equivalence ratio above 0.7,the fuel-air mixture burns very fast and the amount of citric oxide emission increases rapidly, so the spark timing should be retarded as compared with MBT.

Mathematical Modeling of the Effect of External Radiative Heating on Heat and Mass Transfer Between A Semi-transparent Diesel Fuel Droplet and Quiescent Air

  • Woo In-Sung;Choi Sung-Eul;Stamatov Venelin
    • International Journal of Safety
    • /
    • 제3권1호
    • /
    • pp.20-26
    • /
    • 2004
  • The system considered in this model consists of a single, semi- transparent, diesel fuel droplet, which is immobile in the heating area and surrounded by a quiescent air. A uniform external radiation field surrounds the droplet. Results from mathematical simulation suggest that because of the higher surface temperature, the external radiative heating of the droplet can promote an earlier ignition of the fuel vapour/air mixture. The radiative heating of the droplet increases the mass transfer from the droplet to the surrounding gas-phase, thus, decreasing the heterogeneity of the fuel droplet/air system.

디젤기관의 스모크배출의 확산연소 의존성에 관한 연구 (A Study on Dependence of Smoke Emission in Diesel Engines Upon Diffusion Combustion)

  • 한성빈;문성수;이성열
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.397-404
    • /
    • 1994
  • Smoke is emitted in diesel engines because fuel injected into the high-temperatured and high-pressured combustion chamber burns with its mixture with insufficient oxygeny. In consideration of air pollution, above all, it is necessary to illuminate the cause of smoke emission in diesel engines. The smoke emission, which is characteristic of diffusion combustion in diesel engines, results from pyrolysis of fuel not mixed with air. Therefore the smoke emission is dependent on diffusion combustion quantity, which is in turn controlled by engine parameter. The study aims at making clear and interpreting the interdependence of smoke emission in diesel engines with heat released within combustion chamber, camparing diffusion combustion quantity according to each engine parameter (air fuel ratio, injection timing, and engine speed), and showing the relation between smoke emission and fraction of diffusion combustion through experiment.

대형 LPG 엔진의 노크 특성에 관한 연구 (The Study on Knock Characteristics of Heavy Duty LPG Engine)

  • 황승환;이정원;민경덕
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.107-113
    • /
    • 2002
  • LPG has been well known as a clean alternative fuel for vehicles. Recently, several LPG engines for heavy duty vehicles have been developed, which can replace some diesel engines that are one of the main sources for air pollution in the urban area. Because cylinder bore of heavy duty LPG engine is larger than that of gasoline, the study of knock characteristics of LPG engine are needed. In this study, the knock characteristics were investigated with various engine speed, air excess ratios and LPG fuel compositions. Experimental results indicated that the Knock occurrence probability decreases with increasing engine speed and propane fraction of fuel. The Knock occurrence probability is highest at excess air ratio of 1 and decreases as the mixture strength became leaner.

석탄가스화 연료의 정적 예혼합 연소특성 (Premixed Combustion Characteristics of Coal Gasification Fuel in Constant Volume Combustion Chamber)

  • 김태권;장준영
    • 한국환경과학회지
    • /
    • 제15권6호
    • /
    • pp.601-606
    • /
    • 2006
  • The coal gasification fuel is important to replace petroleum fuel. Also they have many benefits for reducing the air pollution. Measurements on the combustion characteristics of synthetic gas from coal gasification have been conducted as compared with LPG in constant volume combustion chamber. The fuel is low caloric synthetic gas containing carbon monoxide 30%, hydrogen 20%, carbon dioxide 5%, and nitrogen 45%. To elucidate the combustion characteristics of the coal gasification fuel, the combustion pressures, combustion durations, and pollutants(NOx, $CO_2$, CO) are measured with equivalence ratios($\phi$), and initial pressures of fuel-air mixture in constant volume chamber. In the case of the coal gasification fuel, maximum combustion pressure and NOx concentration are lower rather than LPG fuel. However CO and $CO_2$ emission concentration are similar to that of LPG fuel.

과농-희박연료가 교차로 공급되는 상호작용 화염의 화염날림에 관한 연구 (Effect of Lean-rich Fuel Staging to the Multiple Jet Flames on the Blowout Velocity)

  • 이병준;박경욱
    • 대한기계학회논문집B
    • /
    • 제32권1호
    • /
    • pp.7-14
    • /
    • 2008
  • It has been reported that partially premixed interacting flame could be sustained till sonic exit velocities if eight small nozzles are arranged optimally and one nozzle on the center is fed small amount of fuel. But the equivalence ratios in this experiments were 20-60. In this research, experiments were conducted to know the effects of lean-rich staging in multiple jet flames on the blowout velocity. The fuel mole tractions in the fuel-air mixture, the nozzle exit velocity and the diameter between adjacent nozzles were alternatively changed. When the lower mole fraction fuel was fed to the nozzles located near the center and small amount of fuel to the center nozzle, flame was not extinguished even at the nozzle exit velocity of 200m/s. Also the interacting flame could be sustained till that velocity when four small size nozzles for lean mixture were located within the arrangement of four nozzles for rich mixture and configured optimally.

An Investigation of Design Parameter and Atomization Mechanism for Air Shrouded Injectors

  • Lee, Ki-Hyung;Lee, Chang-Sik;Kim, Bong-Gyu;Jeong, Hae-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제17권5호
    • /
    • pp.751-757
    • /
    • 2003
  • With increasing requirements for the less harmful exhaust emissions and the better fuel economy, the conventional injectors in gasoline engines can be replaced by the air shrouded injector in order to provide improved combustion in engine operations. To find out the optimal shape of air shrouded atomizer attached to the conventional injector nozzle, the critical design parameters such as droplet size, fuel and air inlet angles, and injection angles were investigated based on experimental analyses. To explain the characteristics of fuel atomization, these experimental approaches were carried out using a Phase Doppler Particle Analyzer (PDPA) system. The droplet sizes of injected air fuel mixture were obtained by using the beam diffraction phenomenon. In order to improve the atomization effect, the various atomizers were investigated. The Saute. Mean Diameter (SMD) measured at the predetermined locations outside the atomizer represented the performance of fuel atomization. The experimental results show that the design factors and atomization mechanism needed for developing air shrouded injectors. The suggested design parameters in this paper can be a useful reference in the early design stage.

LBT연소를 통한 Idling 운전시의 연소안정성 평가 (Evaluation of Combustion Stability of Idling Speed State)

  • 이중순;이종승;김진영;정성식;하종률
    • 한국자동차공학회논문집
    • /
    • 제7권5호
    • /
    • pp.66-72
    • /
    • 1999
  • It is necessary to discuss lightening engine parts and reducing the friction of sliding parts to improve fuel consumption and combustion stability at idling condition. Lean best torque combustion which produce maximum power at a lean air-fuel ratio is effective for the reduction of exhaust gas emission and the improvement of fuel consumption. Accordingly, this study deals with the expansion of lean combustible limitation, the combustion stability and the reduction of idle speed through the analysis of combustion characteristics on the base of the control technique of precise air-fuel ratio because it does not need to maximum power at idling condition. The idle speed is increased proportional to ISC(Idle Speed Control) duty ratio. On the other hand the idle speed decreased by lean air-fuel ratio. The COV in engine speed is stable within maximum two percent up to 17.6 mixture ratio by the control of ISC duty ratio.

  • PDF

DME와 LPG 연료의 정적 예혼합 연소특성 (Constant Volume Premixed Combustion Characteristics of Dimethyl Ether and LPG Fuel)

  • 김태권;임문혁;장준영
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.83-88
    • /
    • 2003
  • Measurements on the combustion characteristics of dimethyl ether(DME:$CH_3$O$CH_3$) as compared with LPC in constant volume combustion chamber have been conducted. The DME is a good alternative fuel having oxygen component in fuel. To elucidate the combustion characteristics of dimethyl ether as a fuel, the combustion pressures, combustion durations, and pollutants(NOx, $CO_2$, CO) are measured with equivalence ratios(Ø), and initial Pressures of fuel-air mixture. In the case of DME, the NOx concentration peaks in leu flame Ø = 0.85~0.9, and $CO_2$ concentration peaks at Ø=1.1, while the CO concentration abruptly rises at the condition of fuel-rich mixtures.

직접분사식 2행정 디젤기관의 연소실 형상에 따른 화염 특성 -소기압력 및 소기온도의 영향을 중심으로- (The Flame Characteristics by Combustion Chamber Shape in 2 Stroke D.I. Diesel Engine -The Influence of Scavenging Pressure and Scavenging Temperature-)

  • 최익수;방중철
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.55-63
    • /
    • 2003
  • In a diesel engine, air-fuel mixture formation and ignition delay period have great influence on the performance of engine. Their main factors are combustion chamber shape, fuel injection system. air volume, air flow and so on. So, the combustion process in the cylinder is complex because of many factors which have direct and indirect effects on it. In this study, we take into consideration of scavenging pressure and scavenging temperature that are hewn as the main factor to the combustion process of two-stroke D.1. diesel engine. It is taken a picture of the combustion flame process for combustion chamber of re-entrant type and cylindrical type. So, it is applied to the basis data of combustion chamber design from an image analysis.